Today's Topics

Monday, March 17, 2025 (Week 7, lecture 17) – Chapters 18, 19, 22.

A. Luminosity

- **B. Stellar statistics**
- C. Luminosity vs mass
- D. H-R diagram.
- E. Stellar evolution: *Main sequence to red giants.*

Problem Set #6 is available on ExpertTA and is due on Friday, March 21 by 9:00 am

Interlude 1 Essay is due on Friday, March 28 by 9:00 am

Luminosity = Output Power

Stellar luminosity is given by

Luminosity = *Output Power* = *Intensity* × *Surface Area*

Luminosity = Output Power

Stellar luminosity is given by

Luminosity = *Output Power* = *Intensity* × *Surface Area*

Light intensity for a blackbody is given by the Stefan-Boltzmann law:

Intensity =
$$\sigma T^4$$

A hot star is more luminous

Luminosity = Output Power

Stellar luminosity is given by

Luminosity = Output Power = Intensity × Surface Area

Light intensity for a blackbody is given by the Stefan-Boltzmann law:

Intensity =
$$\sigma T^4$$

A hot star is more luminous

The surface area of a star is related to its radius, i.e. size:

Surface Area = $4\pi R^2$

Our Milky Way galaxy has 100-400 billion stars \rightarrow a statistical analysis of stars is feasible.

Milky Way galaxy: 360° view.

Center of Milky Way galaxy (optical) European Southern Observatory

galactic center

Sagittarius "teapot"

Center of Milky Way galaxy (optical) European Southern Observatory

Center of Milky Way galaxy (near-IR, IR: 1.25 μm, 1.65 μm, 2.15 μm) European Southern Observatory https://www.eso.org/public/images/eso1242a/zoomable/

galactic center

Sagittarius "teapot"

Center of Milky Way galaxy (near-IR, IR: 1.25 μm, 1.65 μm, 2.15 μm) European Southern Observatory

https://www.eso.org/public/images/eso1242a/zoomable/

galactic center

Sagittarius "teapot"

Center of Milky Way galaxy (near-IR, IR: 1.25 μm, 1.65 μm, 2.15 μm) European Southern Observatory

https://www.eso.org/public/images/eso1242a/zoomable/

[Zoom-in of previous photo, (near/short-infrared)]

https://www.eso.org/public/images/eso1242a/zoomable/

M22 globular cluster, Milky Way galaxy

PollEv Quiz: PollEv.com/sethaubin

Mass-Luminosity Relation

Luminosity can be determined by the brightness of star (as seen from Earth) and its distance.

→ Reminder: distance can be measured by **parallax.**

How do you determine the mass of a star?

About Half of "Stars" are Binary/Trinary Stars

By Hubble European Space AgencyCredit: Akira Fujii - http://www.spacetelescope.org/images/heic0206j/ (watermark was cropped), Public Domain, https://commons.wikimedia.org/w/index.php?curid=5246351

About Half of "Stars" are Binary/Trinary Stars

[By NASA, ESA, H. Bond (STScl), and M. Barstow (University of Leicester)]

By Hubble European Space AgencyCredit: Akira Fujii - http://www.spacetelescope.org/images/heic0206j/ (watermark was cropped), Public Domain, https://commons.wikimedia.org/w/index.php?curid=5246351

How to Determine Stellar Mass ?

- Use binary star systems.
- Use Kepler's 3rd law (Newton's version) to determine M1 + M2.
- Use observation of center-of-mass to obtain M1/M2. (or use Doppler velocimetry)

Mass-Luminosity Relation

Mass-Luminosity Relation

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous.
- > Very short lived.
 - \rightarrow < 1-10 million years.

Light stars (sun-like & smaller)

- ➤ Yellow and red color.
- ➤ cooler and dimmer.
- > Long lived.
 - \rightarrow > 10 billion years.

Spectral Type	Mass (Sun=1)	Radius (Sun=1)	Luminosity (Sun=1)	Temperature	Lifetime (yrs) on main seq.
G0	1.1	1.1	1.4	6,000 K	9 billion

Spectral Type	Mass (Sun=1)	Radius (Sun=1)	Luminosity (Sun=1)	Temperature	Lifetime (yrs) on main seq.
FO	1.7	1.4	5	7,500 K	2.7 billion
G0	1.1	1.1	1.4	6,000 K	9 billion
КО	0.8	0.8	0.35	5,000 K	14 billion

Spectral Type	Mass (Sun=1)	Radius (Sun=1)	Luminosity (Sun=1)	Temperature	Lifetime (yrs) on main seq.
A0	3.3	2.5	55	10,000 K	0.5 billion
FO	1.7	1.4	5	7,500 K	2.7 billion
G0	1.1	1.1	1.4	6,000 K	9 billion
КО	0.8	0.8	0.35	5,000 K	14 billion
MO	0.4	0.6	0.05	3,500 K	200 billion

Spectral Type	Mass (Sun=1)	Radius (Sun=1)	Luminosity (Sun=1)	Temperature	Lifetime (yrs) on main seq.
O5	40	18	700,000	40,000 K	0.001 billion (1 million)
BO	16	7	270,000	28,000 K	0.01 billion (10 million)
A0	3.3	2.5	55	10,000 K	0.5 billion
FO	1.7	1.4	5	7,500 K	2.7 billion
G0	1.1	1.1	1.4	6,000 K	9 billion
КО	0.8	0.8	0.35	5,000 K	14 billion
MO	0.4	0.6	0.05	3,500 K	200 billion

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous.
- > Very short lived.
 - \rightarrow < 1-10 million years.

Light stars (sun-like & smaller)

- ➤ Yellow and red color.
- ➤ cooler and dimmer.
- > Long lived.
 - \rightarrow > 10 billion years.

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous.
- > Very short lived.
 - \rightarrow < 1-10 million years.

Light stars (sun-like & smaller

- Yellow and red color.
- ➤ cooler and dimmer.
- > Long lived.
 - \rightarrow > 10 billion years.

Old age

Stars evolve <u>quickly</u> towards the upper right corner.

 \rightarrow More luminous, but cooler.

Luminosity (L_{sur}

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous.
- > Very short lived.
 - \rightarrow < 1-10 million years.

Light stars (sun-like & smaller

- Yellow and red color.
- ➤ cooler and dimmer.
- > Long lived.
 - \rightarrow > 10 billion years.

Old age

Stars evolve <u>quickly</u> towards the upper right corner.

ightarrow More luminous, but cooler.

Red Giants & Supergiants

Red Giants

End-of-life stars with masses of 0.6-10 $\rm M_{Sun}.$

Red Giants & Supergiants

Red Giants

End-of-life stars with masses of 0.6-10 $\rm M_{Sun}.$

Red Supergiants End-of-life stars with masses of 10-40 M_{Sun}.

Aldebaran & Betelgeuse in the Sky

