Midterm #1 Results

Histogram of Midterm #1 Scores

Average score = 71.8 / 100

High score = 99/100

Today's Topics

Friday, March 21, 2025 (Week 7, lecture 19) – Chapters 22, 23.

1. Evolution of massive stars.

2. Type II supernovas: images.

3. Type II supernovas: physics.

Interlude 1 Essay is due on Friday, March 28 by 9:00 am

Stellar evolution: on the H-R diagram

- Yellow and red color.
- \succ cooler and dimmer.
- Long lived.
 - \rightarrow > 10 billion years.

Stellar evolution: on the H-R diagram

Luminosity (L_{sur}

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous.
- > Very short lived.
 - \rightarrow < 1-10 million years.

Light stars (sun-like & smaller)

- Yellow and red color.
- ➤ cooler and dimmer.
- > Long lived.
 - \rightarrow > 10 billion years.

Stellar evolution: on the H-R diagram

Luminosity (L_{sur}

Heavy stars

- ➢ Blue-ish color.
- Hot and very luminous.
- > Very short lived.
 - \rightarrow < 1-10 million years.

Light stars (sun-like & smaller)

- Yellow and red color.
- ➤ cooler and dimmer.
- > Long lived.
 - \rightarrow > 10 billion years.

Old age

Stars evolve <u>quickly</u> towards the upper right corner.

 \rightarrow More luminous, but cooler.

Surface Temperature (K)

Mass is destiny

- Stars with masses above ~ 8M_{Sun} can fuse elements above carbon & oxygen.
- The more massive the star, the more elements can be produced.

 \rightarrow Most massive elements are produced successively in core of star.

• Above iron & nickel, fusion does not generate energy.

- Stars with masses above ~ 8M_{Sun} can fuse elements above carbon & oxygen.
- The more massive the star, the more elements can be produced.

 \rightarrow Most massive elements are produced successively in core of star.

Above iron & nickel, fusion does not generate energy.

```
Alpha-processes

{}^{12}_{6}C + {}^{4}_{2}He \rightarrow {}^{16}_{8}O + 7.6 \text{ MeV}
{}^{16}_{8}O + {}^{4}_{2}He \rightarrow {}^{20}_{10}Ne + 4.7 \text{ MeV}
\downarrow Mg, Si, S, Ar,
Ca, Ti, Cr, Fe
{}^{52}_{26}Fe + {}^{4}_{2}He \rightarrow {}^{56}_{28}Ni + 8.0 \text{ MeV}
```

- Stars with masses above ~ 8M_{Sun} can fuse elements above carbon & oxygen.
- The more massive the star, the more elements can be produced.

 \rightarrow Most massive elements are produced successively in core of star.

Above iron & nickel, fusion does not generate energy.

```
Alpha-processes
 {}^{12}_{6}C + {}^{4}_{2}He \rightarrow {}^{16}_{8}O + 7.6 \text{ MeV}
 {}^{16}_{8}O + {}^{4}_{2}He \rightarrow {}^{20}_{10}Ne + 4.7 MeV
\begin{array}{c} \text{Mg, Si, S, Ar,} \\ \text{Ca, Ti, Cr, Fe} \\ \end{array}
\begin{array}{c} 52\\26\text{Fe} + \frac{4}{2}\text{He} \rightarrow \frac{56}{28}\text{Ni} + 8.0 \text{ MeV} \end{array}
 \begin{array}{c} \mbox{Radioactive decay} \\ {}^{56}_{28}\mbox{Ni} \rightarrow {}^{56}_{27}\mbox{Co} + e^- \\ {}^{56}_{27}\mbox{Co} \rightarrow {}^{56}_{26}\mbox{Fe} + e^- \end{array} \end{array}
```

- Stars with masses above ~ 8M_{Sun} can fuse elements above carbon & oxygen.
- The more massive the star, the more elements can be produced.

 \rightarrow Most massive elements are produced successively in core of star.

Above iron & nickel, fusion does not generate energy.

Evolution of Massive Stars Example: SN 1987A

Mass of SN 1987A $\approx 20 M_{Sun}$

Phase	Central Temperature (K)	Central Density (g/cm ³)	Time Spent in This Phase
Hydrogen fusion	40 × 10 ⁶	5	8 × 10 ⁶ years
Helium fusion	190 × 10 ⁶	970	10 ⁶ years
Carbon fusion	870 × 10 ⁶	170,000	2000 years
Neon fusion	1.6 × 10 ⁹	3.0 × 10 ⁶	6 months
Oxygen fusion	2.0 × 10 ⁹	5.6 × 10 ⁶	1 year
Silicon fusion	3.3 × 10 ⁹	4.3 × 10 ⁷	Days
Core collapse	200 × 10 ⁹	2 × 10 ¹⁴	Tenths of a second
type II supernova	a 🔶 neutron star typica	ally (or black hole)	

Fusion production of iron & nickel

[Table 23.2, OpenStax: Astronomy]

Ultimate Fate of Stars

Initial Mass (Mass of Sun = 1) ^[1]	Final State at the End of Its Life
< 0.01	Planet
0.01 to 0.08	Brown dwarf
0.08 to 0.25	White dwarf made mostly of helium
0.25 to 8	White dwarf made mostly of carbon and oxygen
8 to 10	White dwarf made of oxygen, neon, and magnesium
10 to 40	Supernova explosion that leaves a neutron star type II
> 40	Supernova explosion that leaves a black hole supernova

[Table 23.1, OpenStax: Astronomy]

Supernovas can be as bright as a galaxy

 supernova SN 1994 D (type 1a)

supernova SN 2011dh Type 2, progenitor~ 12 M_{Sun}

M51 Whirlpool galaxy – distance: 23 MLy Source: Rafael Ferrando, observatory Pla D'Arguines

M95 galaxy – distance: 33 MLy Source: Adam Block, Mt. Lemmon SkyCenter, U. of Arizona supernova SN 2012aw Type 2, progenitor~ 14-<u>15 M_{Sun}</u>

Supernova SN 1987A

[NASA, ESA, and R. Kirshner and P. Challis: Jan. 2017]

Supernova SN 1987A

[ESO: Large Magellanic Cloud, Tarantula nebula, Feb. 24, 1987]

Type II supernova

- \rightarrow Core collapses under gravity.
- \rightarrow Produces a neutron star or black hole.

Note: No neutron star has been definitively detected yet !

1. iron core collapses under gravity

Core material rushes in

1. iron core collapses under gravity

Core

material

rushes in

2. Collapses continues to **nuclear density** (i.e. core is like a giant nucleus)

neutrino production $p^+ + e^- \rightarrow n + \nu$ (weak force)

Core

material

rushes in

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{Sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Lots of neutrinos

- When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities. \rightarrow neutrino production is favored: $p^+ + e^- \rightarrow n + \nu$.
- About 20% of the core's mass is converted to neutrinos.

 \rightarrow Energy: ~ 99% of the energy is released through neutrinos.

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Lots of neutrinos

- When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities. → neutrino production is favored: $p^+ + e^- \rightarrow n + \nu$.
- About 20% of the core's mass is converted to neutrinos.

 \rightarrow Energy: ~ 99% of the energy is released through neutrinos.

Some light & heavy elements

- About 0.01 % of the supernova's energy is released as electromagnetic radiation (e.g. light).
- Most of the light is emitted due to radioactive decay of heavy elements (primarily Ni).
- Supernovas produce some elements heavier than Fe and Ni (up to Rb).

Supernova

gravity powered neutrino explosion of a massive star

Type II Supernova: What's Left ?

Initial Star Mass	Outcome
10-40 M _{Sun}	Supernova $ ightarrow$ Neutron Star
40-90 M _{Sun}	Supernova $ ightarrow$ Black Hole
>90 M _{Sun}	Direct collapse to Black Hole

Note: the exact outcome depends on the initial composition (metallicity) star.

Skipping the supernova ? Giant star → black hole

N6946-BH1

HST WFC3/UVIS

2015

2007

N6946-BH1 HST WFPC2

> Red supergiant: mass ~ 18-27 M_{sun} NGC 6946 galaxy -- distance: ~ 25 MLy

2009: Star brightened briefly to 10⁶ L_{Sun}

Hubble:NASA/ESA/C. Kochanek (OSU)