
Monday, March 24, 2025 (Week 8, lecture 20) – Chapters 22, 23.

1. Type II supernovas: physics.

2. Supernova remnants.

3. Neutron stars & pulsars.

Today’s Topics

Interlude 1 Essay is due on Friday, March 28 by 9:00 am on Gradescope.



Supernova SN 1987A

[ESO: Large Magellanic Cloud, Tarantula nebula, 
Feb. 24, 1987]

Type II supernova
→ Core collapses under gravity.
→ Produces a neutron star or black hole.

supernova SN 1987a
Type 2, progenitor 20 MSun
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[PopePompus, Wikipedia (2022)]



Supernova SN 1987A

[ESO: Large Magellanic Cloud, Tarantula nebula, 
Feb. 24, 1987]

[NASA, ESA, and R. Kirshner and P. Challis: Jan. 2017]

Note: No neutron star has been definitively detected 
yet … but there is good evidence for one.

Type II supernova
→ Core collapses under gravity.
→ Produces a neutron star or black hole.

supernova SN 1987a
Type 2, progenitor 20 MSun



Supernova SN 1987A

[NASA, ESA, and R. Kirshner and P. Challis: Jan. 2017]

Note: No neutron star has been definitively detected 
yet … but there is good evidence for one.

Type II supernova
→ Core collapses under gravity.
→ Produces a neutron star or black hole.

[Hubble/Chandra/ALMA composite, 
by A. Angelich (2014)]

[James Webb Space Telescope, M. Matsuura, R. 
Arendt, C. Fransson, J. Larsson, A. Pagan (2023)]



Type II Supernova: Core Collapse

[OpenStax: Astronomy]

Iron ash core collapses 
when fusion stops
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→ Star is blown apart.



Type II Supernova: Core Collapse

[OpenStax: Astronomy]

Iron ash core collapses 
when fusion stops

1. iron core collapses under gravity

2. Collapses continues to nuclear 
density (i.e. core is like a giant 
nucleus)

nuclear 
core

neutrino
production

𝑝+ + 𝑒− → 𝑛 + 𝝂
(weak force)

Core 
material 
rushes in

neutron 
star

3. In-falling material 
rebounds off neutron 
star core creating an 
outward moving 
shockwave.
→ Star is blown apart.

Note: entire process 
takes a few seconds.



Type II Supernova: What’s produced ?

Lots of Energy
▪ Supernovas typically emit about 1046 Joules of energy.
 → 100 times more energy than Sun will emit in its lifetime (1044 Joules).

▪ Supernovas shine with a luminosity of 109-1010 LSun for a few months.

▪ This energy comes from gravitational potential energy released during the collapse.
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Lots of neutrinos
▪ When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities.
 → neutrino production is favored: 𝑝+ + 𝑒− → 𝑛 + 𝝂.

▪ About 20% of the core’s mass is converted to neutrinos.
 → Energy:  99% of the energy is released through neutrinos. 
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Type II Supernova: What’s produced ?

Lots of neutrinos
▪ When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities.
 → neutrino production is favored: 𝑝+ + 𝑒− → 𝑛 + 𝝂.

▪ About 20% of the core’s mass is converted to neutrinos.
 → Energy:  99% of the energy is released through neutrinos. 

Lots of Energy
▪ Supernovas typically emit about 1046 Joules of energy.
 → 100 times more energy than Sun will emit in its lifetime (1044 Joules).

▪ Supernovas shine with a luminosity of 109-1010 LSun for a few months.

▪ This energy comes from gravitational potential energy released during the collapse.

Some light & heavy elements
▪ About 0.01 % of the supernova’s energy is released as electromagnetic radiation (e.g. light).

▪ Most of the light is emitted due to radioactive decay of heavy elements (primarily Ni).

▪ Supernovas produce some elements heavier than Fe and Ni (up to Rb).



Supernova

=
gravity powered neutrino explosion 

of a massive star



PollEv Quiz:   PollEv.com/sethaubin



Cassiopeia A supernova remnant (type II)
False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue)
[source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

Cassiopeia A: Supernova Remnant
Supernova in the late 1600’s



Cassiopeia A supernova remnant (type II)
False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue)
[source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

neutron star

Cassiopeia A: Supernova Remnant



Cassiopeia A supernova remnant (type II)
False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue)
[source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

neutron star

Cassiopeia A: Supernova Remnant

10 light years



[NASA/ESA/Hubble, 1999-2000]

Supernova in 1054 AD 
(type II)
constellation: Taurus

Crab Nebula: Supernova Remnant



[NASA/ESA/Hubble, 1999-2000]

Supernova in 1054 AD 
(type II)
constellation: Taurus

Crab Nebula: Supernova Remnant

11 light years



Tycho’s Supernova Remnant
SN 1572 (type I = white dwarf + red giant binary explosion)
Constellation: Cassiopeia

[NASA/Chandra (2009)]
Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical



Tycho’s Supernova Remnant
SN 1572 (type I = white dwarf + red giant binary explosion)
Constellation: Cassiopeia

[NASA/Chandra (2009)]
Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical

10 light years



Hubble:

Skipping the supernova ? Giant star → black hole

Red supergiant: mass  18-27 Msun

NGC 6946 galaxy -- distance:  25 MLy

2009: Star brightened briefly to 106 LSun



[Source: Wikipedia, Cmglee (2017)]

Where do heavy elements come from ?

▪ Supernovae are a major source of heavy elements

▪ Most of the iron core of a massive star is “dissolves” into protons in the core collapse.
 → the supernova explosion produces its own iron (and other heavier elements)

This table give the estimated origin of elements in the Solar System.



Type II Supernova: What’s Left ?

Initial Star Mass Outcome

10-40 MSun Supernova → Neutron Star

40-90 MSun Supernova → Black Hole

>90 MSun Direct collapse to Black Hole (no explosion)

Note: the exact outcome depends on the initial composition (metallicity) star.



[NASA/ESA/Hubble, 1999-2000]

Supernova in 1054 AD
constellation: Taurus
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[NASA/ESA/Hubble, 1999-2000]

Supernova in 1054 AD
constellation: Taurus

Crab Nebula: Neutron Star



Crab Nebula: Neutron Star

[NASA/Chandra/Smithsonian]

X-ray image of Crab Nebula neutron star, 2008 X-ray + optical images of Crab Nebula neutron star

[NASA/Hubble/Chandra, J. Hester et al.]



Neutron Stars
[Table 23.3, OpenStax: Astronomy]

(Earth size) (city size)



Neutron Stars
[Table 23.3, OpenStax: Astronomy]

(Earth size) (city size)

Neutron degeneracy pressure holds 
the star against gravitational 
collapse.
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Neutron Stars
[Table 23.3, OpenStax: Astronomy]

(Earth size) (city size)

[Wikipedia: Robert Schulze]

Neutron degeneracy pressure holds 
the star against gravitational 
collapse.

Neutron stars have a very large 
magnetic field: 108 to 1015 
times stronger than Earth’s



Pulsars: Rotating Neutron Stars

▪ Beams of radiation from the magnetic poles of a neutron 
star can give rise to pulses of emission as the star rotates.

▪ As each beam sweeps over Earth, we see a short pulse of 
radiation (like a lighthouse).

[OpenStax: Astronomy, Tony Hisgett]

Jocelyn Bell Burnell
co-discoverer of pulsars (1967)
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Pulsars: Rotating Neutron Stars

▪ Beams of radiation from the magnetic poles of a neutron 
star can give rise to pulses of emission as the star rotates.

▪ As each beam sweeps over Earth, we see a short pulse of 
radiation (like a lighthouse).

[OpenStax: Astronomy, Tony Hisgett]

[Cambridge University, Lucky Imaging Group] Crab Nebula pulsar/neutron star

Jocelyn Bell Burnell
co-discoverer of pulsars (1967)

Typical rotation period:

▪ Very stable.

▪ ms to seconds.

▪ Can change abruptly 
during a “starquake.”
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