Today's Topics

Monday, March 24, 2025 (Week 8, lecture 20) – Chapters 22, 23.

1. Type II supernovas: physics.

2. Supernova remnants.

3. Neutron stars & pulsars.

Interlude 1 Essay is due on Friday, March 28 by 9:00 am on Gradescope.

Supernova SN 1987A

[ESO: Large Magellanic Cloud, Tarantula nebula, Feb. 24, 1987]

Type II supernova

- \rightarrow Core collapses under gravity.
- \rightarrow Produces a neutron star or black hole.

Supernova SN 1987A

[ESO: Large Magellanic Cloud, Tarantula nebula, Feb. 24, 1987]

Type II supernova

- \rightarrow Core collapses under gravity.
- \rightarrow Produces a neutron star or black hole.

Note: No neutron star has been definitively detected yet ... but there is good evidence for one.

Supernova SN 1987A

[Hubble/Chandra/ALMA composite, by A. Angelich (2014)]

Type II supernova

- \rightarrow Core collapses under gravity.
- \rightarrow Produces a neutron star or black hole.

Note: No neutron star has been definitively detected yet ... but there is good evidence for one.

1. iron core collapses under gravity

Core material rushes in

1. iron core collapses under gravity

Core

material

rushes in

2. Collapses continues to **nuclear density** (i.e. core is like a giant nucleus)

neutrino production $p^+ + e^- \rightarrow n + \nu$ (weak force)

Core

material

rushes in

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{Sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Lots of neutrinos

- When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities. \rightarrow neutrino production is favored: $p^+ + e^- \rightarrow n + \nu$.
- About 20% of the core's mass is converted to neutrinos.

 \rightarrow Energy: ~ 99% of the energy is released through neutrinos.

Type II Supernova: What's produced ?

Lots of Energy

- Supernovas typically emit about 10⁴⁶ Joules of energy.
 - \rightarrow 100 times more energy than Sun will emit in its lifetime (10⁴⁴ Joules).
- Supernovas shine with a luminosity of 10⁹-10¹⁰ L_{sun} for a few months.
- This energy comes from gravitational potential energy released during the collapse.

Lots of neutrinos

- When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities. → neutrino production is favored: $p^+ + e^- \rightarrow n + \nu$.
- About 20% of the core's mass is converted to neutrinos.

 \rightarrow Energy: ~ 99% of the energy is released through neutrinos.

Some light & heavy elements

- About 0.01 % of the supernova's energy is released as electromagnetic radiation (e.g. light).
- Most of the light is emitted due to radioactive decay of heavy elements (primarily Ni).
- Supernovas produce some elements heavier than Fe and Ni (up to Rb).

Supernova

gravity powered neutrino explosion of a massive star

PollEv Quiz: PollEv.com/sethaubin

Cassiopeia A: Supernova Remnant

Supernova in the late 1600's

Cassiopeia A supernova remnant (type II)

False color composite image from Hubble (optical = gold), Spitzer (IR = red), and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

Cassiopeia A: Supernova Remnant

Cassiopeia A supernova remnant (type II)

False color composite image from Hubble (optical = gold), Spitzer (IR = red), and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

Cassiopeia A: Supernova Remnant

~10 light years

Cassiopeia A supernova remnant (type II)

False color composite image from Hubble (optical = gold), Spitzer (IR = red), and Chandra (X-ray = green & blue) [source: Wikipedia, Oliver Krause (Steward Observatory) and co-workers]

Crab Nebula: Supernova Remnant

Supernova in 1054 AD (type II) constellation: Taurus

Crab Nebula: Supernova Remnant

Supernova in 1054 AD (type II) constellation: Taurus

~11 light years

Tycho's Supernova Remnant

SN 1572 (type I = white dwarf + red giant binary explosion) Constellation: Cassiopeia

Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical [NASA/Chandra (2009)]

Tycho's Supernova Remnant

SN 1572 (type I = white dwarf + red giant binary explosion) Constellation: Cassiopeia

~10 light years

Composite image: blue = hard x-rays, red = soft x-rays, background stars = optical [NASA/Chandra (2009)]

Skipping the supernova ? Giant star \rightarrow black hole

N6946-BH1

HST WFC3/UVIS

2015

2007

N6946-BH1 HST WFPC2

> Red supergiant: mass ~ 18-27 M_{sun} NGC 6946 galaxy -- distance: ~ 25 MLy

2009: Star brightened briefly to 10⁶ L_{Sun}

Hubble:NASA/ESA/C. Kochanek (OSU)

Where do heavy elements come from ?

- Supernovae are a major source of heavy elements
- Most of the iron core of a massive star is "dissolves" into protons in the core collapse.
 → the supernova explosion produces its own iron (and other heavier elements)

This table give the estimated origin of elements in the Solar System.

[Source: Wikipedia, Cmglee (2017)]

Type II Supernova: What's Left ?

Initial Star Mass	Outcome
10-40 M _{Sun}	Supernova $ ightarrow$ Neutron Star
40-90 M _{Sun}	Supernova $ ightarrow$ Black Hole
>90 M _{Sun}	Direct collapse to Black Hole

Note: the exact outcome depends on the initial composition (metallicity) star.

Crab Nebula: Neutron Star

Supernova in 1054 AD constellation: Taurus

Crab Nebula: Neutron Star

Supernova in 1054 AD constellation: Taurus

[NASA/ESA/Hubble, 1999-2000]

Crab Nebula: Neutron Star

X-ray image of Crab Nebula neutron star, 2008

X-ray + optical images of Crab Nebula neutron star

[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

Neutron degeneracy pressure holds

the star against gravitational collapse.

[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

[Wikipedia: Robert Schulze]

[Table 23.3, OpenStax: Astronomy]

Property	White Dwarf	Neutron Star
Mass (Sun = 1)	0.6 (always <1.4)	Always >1.4 and <3
Radius	7000 km (Earth size)	10 km (city size)
Density	8 × 10 ⁵ g/cm ³	10 ¹⁴ g/cm ³

Pulsars: Rotating Neutron Stars

- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).

Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Pulsars: Rotating Neutron Stars

- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).

Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Pulsars: Rotating Neutron Stars

- Beams of radiation from the magnetic poles of a neutron star can give rise to pulses of emission as the star rotates.
- As each beam sweeps over Earth, we see a short pulse of radiation (like a lighthouse).

Jocelyn Bell Burnell co-discoverer of pulsars (1967)

Typical rotation period:

- Very stable.
- ms to seconds.
- Can change abruptly during a "starquake."