Today’s Topics

Monday, March 24, 2025 (Week 8, lecture 20) — Chapters 22, 23.

1. Type |l supernovas: physics.

2. Supernova remnants.

3. Neutron stars & pulsars.

Interlude 1 Essay is due on Friday, March 28 by 9:00 am on Gradescope.



uernova SN 1987A

Type |l supernova

visual magnitude

—> Core collapses under gravity.

—> Produces a neutron star or black hole.

3 =
VA
[ ]
4 %
4 " .
L ]
LY
_...
44— \
%
~
5 ~
L]
\.
T [PopePompus, Wikipedia (2022)] S,
Mar. Apr. May Jun. Jul. Aug. Sep. Oct

1987




Supernova SN 1987A

Type |l supernova
—> Core collapses under gravity.
- Produces a neutron star or black hole.

Note: No neutron star has been definitively detected
yet ... but there is good evidence for one.

Fobl 24 1987]



Supernova SN 1987A

Type |l supernova
—> Core collapses under gravity.
- Produces a neutron star or black hole.

[Hubble/Chandra/ALMA composite,
by A. Angelich (2014)]

[NASA, ESA, and R. Kifshiner'and P. Challis: Jana2017]

[Jamés Webb Space Telescope, M. Matsuura R, Note: No neutron star has been definitively detected
Arendt, C. Fransson, J. Larsson, A. Pagan.(2023)] yet ... but there is good evidence for one.




Type |l Supernova: Core Collapse

Hydrogen envelope
Hydrogen, helium fusion
Helium fusion

Carbon, oxygen fusion

Magnesium, neon,
oxygen fusion

Silicon, sulfur fusion

Iron ash core collapses
when fusion stops

[OpenStax: Astronomy]
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1. iron core collapses under gravity
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Type |l Supernova: Core Collapse

[OpenStax: Astronomy]

3. In-falling material
rebounds off neutron
star core creating an
outward moving

—> Star is blown apart.

Hydrogen envelope

Hydrogen, helium fusion

Helium fusion

Carbon, oxygen fusion

Magnesium, neon,
oxygen fusion

Silicon, sulfur fusion

1. iron core collapses under gravity

Core
material
rushes in
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Iron ash core collapses
when fusion stops

2. Collapses continues to nuclear
density (i.e. core is like a giant
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Type |l Supernova: Core Collapse

1. iron core collapses under gravity

Hydrogen envelope

Hydrogen, helium fusion \ /
Helium fusion

Carbon, oxygen fusion —_— 4+—
Core

Magnesium, neon, '
oxygen fusion material
rushes in

Silicon, sulfur fusion

Iron ash core collapses
when fusion stops

[OpenStax: Astronomy]

2. Collapses continues to nuclear

, , density (i.e. core is like a giant
3. In-falling material
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Type Il Supernova: What’s produced ?

Lots of Energy
= Supernovas typically emit about 10%¢ Joules of energy.
— 100 times more energy than Sun will emit in its lifetime (10%** Joules).

= Supernovas shine with a luminosity of 10°-101° L., for a few months.

Sun

= This energy comes from gravitational potential energy released during the collapse.



Type Il Supernova: What’s produced ?

Lots of Energy

= Supernovas typically emit about 10% Joules of energy.
— 100 times more energy than Sun will emit in its lifetime (10%** Joules).

= Supernovas shine with a luminosity of 10°-10%° L. for a few months.

Sun

= This energy comes from gravitational potential energy released during the collapse.

Lots of neutrinos
= When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities.
—> neutrino production is favored: pt + e~ - n + v.

=  About 20% of the core’s mass is converted to neutrinos.
- Energy: ~ 99% of the energy is released through neutrinos.



Type Il Supernova: What’s produced ?

Lots of Energy

= Supernovas typically emit about 10% Joules of energy.
— 100 times more energy than Sun will emit in its lifetime (10%** Joules).

= Supernovas shine with a luminosity of 10°-10%° L. for a few months.

Sun

= This energy comes from gravitational potential energy released during the collapse.

Lots of neutrinos

= When the core collapses, the temperature spikes to 10-100 billion K at nuclear densities.
—> neutrino production is favored: pt + e~ - n + v.

=  About 20% of the core’s mass is converted to neutrinos.
- Energy: ~ 99% of the energy is released through neutrinos.

Some light & heavy elements
= About 0.01 % of the supernova’s energy is released as electromagnetic radiation (e.g. light).

= Most of the light is emitted due to radioactive decay of heavy elements (primarily Ni).

= Supernovas produce some elements heavier than Fe and Ni (up to Rb).



Supernova

gravity powered neutrino explosion
of a massive star



PollEv Quiz: PollEv.com/sethaubin



CaSS|ope|a Asupemova remnant (type II) U ee i SRR
False color composite image from Hubble (optical = gold), Spltzer (IR = red) and Chandra (X ray green & blue) h

[source: W|k|ped|a OI|ver Krause (Steward Observatory) and co-workers]
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Cassiopeia A supernova remnant (typell) - &%  +« = 4
False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue) -
[source: Wikjped_ia, Oliyer Krause'(Steward Observatory) and co-workers] x e, N - T i E ' ® . T i
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Cassiopeia A supernova remnant (typell) - &%  +« = 4
False color composite image from Hubble (optical = gold), Spitzer (IR = red),and Chandra (X-ray = green & blue) -
[source: Wikjped_ia, Oliyer Krause'(Steward Observatory) and co-workers] S . -, T i E ' ® . T i
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Supernova in 1054 AD
(type ll), -

constellation: Taurus

-
. [NASA/ESA/Hubee, 1999-2000]




Supernova in 1054 AD
(type ll), -

constellation: Taurus

-
. [NASA/ESA/Hubee, 1999-2000]




Tyho’s Superova Remnant

SN 1572 (type | = white dwarf + red glant blnary epr05|on)

Constellation: Cassiopeia

€omposite image: blue = hard x'rays, red = soft x° rays, background stars = optlcal
[NASA/@andra (2009)] .



Tyho’s Superova Remnant

SN 1572 (type | = white dwarf + red glant blnary epr05|on)

Constellation: Cassiopeia
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€omposite image: blue = hard x'rays, red = soft x° rays, background stars = optlcal
[NASA/@andra (2009)] .



Skipping the supernova ? Giant star - black hole

N6946-BH1 » 2007 o N6946~BH1

HST WFPC2 HST WFC3/UVIS
L

Red*supergiant: mass ~ 18-27 M
NGC 6946 galaxy  distance: ~ 25 MLy

sun

2009: Star brighte%ed briefly to 108 L

Sun

¥
' -

Hubble:NASA/ESA/C.|Kochanek (OSUY




Where do heavy elements come from ?

= Supernovae are a major source of heavy elements

= Most of the iron core of a massive star is “dissolves” into protons in the core collapse.
— the supernova explosion produces its own iron (and other heavier elements)
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This table give the estimated origin of elements in the Solar System. [Source: Wikipedia, Cmglee (2017)]



Type Il Supernova: What’s Left ?

Initial Star Mass Outcome
10-40 Mg, Supernova > Neutron Star
40-90 Mg, Supernova > Black Hole
>90 M, Direct collapse to Black Hole | (no explosion)

Note: the exact outcome depends on the initial composition (metallicity) star.



Supernova in 1054 AD

constellation: Taurus

-
. [NASA/ESA/Hubee, 1999-2000]




Supernova in 1054 AD

constellation: Taurus

-
. [NASA/ESA/Hubee, 1999-2000]




Crab Nebula: Neutron Star

[NASA/Chandra/Smithsonian] [NASA/Hubble/Chandra, J. Hester et al.]

X_ray image of Crab Nebula neutron star, 2008 X'ray + Optical images of Crab Nebula neutron star



Neutron Stars

[Table 23.3, OpenStax: Astronomy]

Mass (Sun =1) 0.6 (always <1.4) Always >1.4 and <3

Radius 7000 km (Earth size) 10 km (city size)

Density 8 x 10° g/cm3 104 g/cm?



Neutron Stars

[Table 23.3, OpenStax: Astronomy]

Mass (Sun =1) 0.6 (always <1.4) Always >1.4 and <3
Radius 7000 km (Earth size) 10 km (city size)
Density 8 x 10° g/cm3 104 g/cm?

Neutron degeneracy pressure holds
the star against gravitational
collapse.



Property
Mass (Sun=1)
Radius
Density

Neutron degeneracy pressure holds

the star against gravitational
collapse.

Neutron Stars

[Table 23.3, OpenStax: Astronomy]

White Dwarf Neutron Star
0.6 (always <1.4) Always >1.4 and <3
7000 km (Earth size) 10 km (city size)
8 x 10° g/cm?3 10" g/em3

outer crust 0.3-0.5 km

g ions, electrons

inner crust 1-2 km
electrons, neutrons, nuclei

outer core ~ 9 km
neutron-proton Fermi liquid

few % electron Fermi gas

inner core 0-3 km
quark gluon plasma?

[Wikipedia: Robert Schulze]



Property
Mass (Sun=1)
Radius
Density

Neutron degeneracy pressure holds

the star against gravitational
collapse.

Neutron stars have a very large

magnetic field: 108 to 10%°
times stronger than Earth’s

Neutron Stars

[Table 23.3, OpenStax: Astronomy]

White Dwarf Neutron Star
0.6 (always <1.4) Always >1.4 and <3
7000 km (Earth size) 10 km (city size)
8 x 10° g/cm?3 10" g/em3

outer crust 0.3-0.5 km

g ions, electrons

inner crust 1-2 km
electrons, neutrons, nuclei

outer core ~ 9 km
neutron-proton Fermi liquid

few % electron Fermi gas

inner core 0-3 km
quark gluon plasma?

[Wikipedia: Robert Schulze]



Pulsars: Rotating Neutron Stars

. Neutron Rotation axis
Magnetic  star : /

field lines
Beam of particles \ :

and radiation

North South
magnetic magnetic
pole pole

[OpenStax: Astronomy, Tony Hisgett]

= Beams of radiation from the magnetic poles of a neutron
star can give rise to pulses of emission as the star rotates.

= As each beam sweeps over Earth, we see a short pulse of
radiation (like a lighthouse).

Jocelyn Bell Burnell
co-discoverer of pulsars (1967)



Pulsars: Rotating Neutron Stars

. Neutron Rotation axis
Magnetic  star : /

field lines gt
Beam of particles \ - - -~

and radiation

North South
magnetic magnetic
pole pole

[OpenStax: Astronomy, Tony Hisgett]

= Beams of radiation from the magnetic poles of a neutron
star can give rise to pulses of emission as the star rotates.

= As each beam sweeps over Earth, we see a short pulse of

radiation (like a lighthouse). Jocelyn Bell Burnell
co-discoverer of pulsars (1967)

-

[Cambridge University, Lucky Imaging Group] Crab NebUIa pu’sar/neutron Star




Pulsars: Rotating Neutron Stars

: Neutron
Magnetic star

field lines
Beam of particles \ _

and radiation

North South
magnetic magnetic
pole pole

[OpenStax: Astronomy, Tony Hisgett]

Beams of radiation from the magnetic poles of a neutron
star can give rise to pulses of emission as the star rotates.

= As each beam sweeps over Earth, we see a short pulse of
radiation (like a lighthouse). Jocelyn Bell Burnell

co-discoverer of pulsars (1967)
Typical rotation period:
= \ery stable.
" ms to seconds.

- = Can change abruptly
R ey e AT Crab Nebula pulsar/neutron star during a “starquake.”
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