Today’s Topics
Wednesday, March 26, 2025 (Week 8, lecture 21) — Chapters 22, 23, 24.
A. Neutron stars & pulsars.
B. Einstein’s Theory of Relativity.
C. Special Relativity.

D. Length contraction.

Interlude 1 Essay is due on Friday, March 28 by 9:00 am on Gradescope.



Type Il Supernova: What’s Left ?

Initial Star Mass Outcome
10-40 Mg, Supernova > Neutron Star
40-90 Mg, Supernova > Black Hole
>90 M, Direct collapse to Black Hole | (no explosion)

Note: the exact outcome depends on the initial composition (metallicity) star.



Supernova in 1054 AD

constellation: Taurus

-
. [NASA/ESA/Hubee, 1999-2000]
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Crab Nebula: Neutron Star

[NASA/Chandra/Smithsonian] [NASA/Hubble/Chandra, J. Hester et al.]

X_ray image of Crab Nebula neutron star, 2008 X'ray + Optical images of Crab Nebula neutron star



Neutron Stars

[Table 23.3, OpenStax: Astronomy]

Mass (Sun =1) 0.6 (always <1.4) Always >1.4 and <3

Radius 7000 km (Earth size) 10 km (city size)

Density 8 x 10° g/cm3 104 g/cm?
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Property
Mass (Sun=1)
Radius
Density

Neutron degeneracy pressure holds

the star against gravitational
collapse.

Neutron Stars

[Table 23.3, OpenStax: Astronomy]

White Dwarf Neutron Star
0.6 (always <1.4) Always >1.4 and <3
7000 km (Earth size) 10 km (city size)
8 x 10° g/cm?3 10" g/em3

outer crust 0.3-0.5 km

g ions, electrons

inner crust 1-2 km
electrons, neutrons, nuclei

outer core ~ 9 km
neutron-proton Fermi liquid

few % electron Fermi gas

inner core 0-3 km
quark gluon plasma?

[Wikipedia: Robert Schulze]
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Mass (Sun=1)
Radius
Density

Neutron degeneracy pressure holds

the star against gravitational
collapse.

Neutron stars have a very large

magnetic field: 108 to 10%°
times stronger than Earth’s

Neutron Stars
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Pulsars: Rotating Neutron Stars

. Neutron Rotation axis
Magnetic  star : /

field lines
Beam of particles \ :

and radiation

North South
magnetic magnetic
pole pole

[OpenStax: Astronomy, Tony Hisgett]

= Beams of radiation from the magnetic poles of a neutron
star can give rise to pulses of emission as the star rotates.

= As each beam sweeps over Earth, we see a short pulse of
radiation (like a lighthouse).

Jocelyn Bell Burnell
co-discoverer of pulsars (1967)
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[Cambridge University, Lucky Imaging Group] Crab NebUIa pu’sar/neutron Star




Pulsars: Rotating Neutron Stars

: Neutron
Magnetic star

field lines
Beam of particles \ _

and radiation

North South
magnetic magnetic
pole pole

[OpenStax: Astronomy, Tony Hisgett]

Beams of radiation from the magnetic poles of a neutron
star can give rise to pulses of emission as the star rotates.

= As each beam sweeps over Earth, we see a short pulse of
radiation (like a lighthouse). Jocelyn Bell Burnell

co-discoverer of pulsars (1967)
Typical rotation period:
= \ery stable.
" ms to seconds.

- = Can change abruptly
R ey e AT Crab Nebula pulsar/neutron star during a “starquake.”




PollEv Quiz: PollEv.com/sethaubin



Einstein’s
Theory of Relativity



Einstein’s Theory of Relativity

1905: Annus Mirabilis
- Brownian motion (motion of atoms in a gas).
- Photo-electric effect (discovery of the photon, E = hf)

- Special theory of relativity.
- Major revision of Galilean relativity.
- Equivalence of energy and matter: E = mc?

Albert Einstein, 1921.
(1879-1955)
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Einstein’s Theory of Relativity

1905: Annus Mirabilis
- Brownian motion (motion of atoms in a gas).
- Photo-electric effect (discovery of the photon, E = hf)

- Special theory of relativity.
- Major revision of Galilean relativity.
- Equivalence of energy and matter: E = mc?

1907-15: General Relativity

Theory of relativity applied to gravity.
—> gravity = curved space-time.

1921: Nobel Prize for photo-electric effect. Albert Einstein, 1921.

1924: Bose-Einstein Condensation (1879-1955)

Predicts the existence of a new type of quantum matter.
— Builds on the work of Satyendra Bose.
- First observed in 1995
= There is a BEC in the basement of Small Hall (room # 069).



|nertia| Frames (Galileo & Einstein)

Inertial Frame
Coordinate system at constant velocity in a rest frame.

g y
think of it as a box y A
Rest Frame AR

A coordinate system that is not moving.
Note: a rest frame is an inertial frame.



lnertial Frames (Galileo & Einstein)

Inertial Frame
Coordinate system at constant velocity in a rest frame.

v y
think of it as a box y A
Rest Frame X’

A coordinate system that is not moving.
Note: a rest frame is an inertial frame.

Important

- You cannot tell if you are moving based on local measurements inside your
inertial reference frame (the frame attached to you).

- If you are accelerating/decelerating, then you can tell based on local
measurements (i.e. there is a force on you that you can measure, F = ma).



Special Relativity Ginstein)

Principle of Relativity
The laws of physics are the same in all inertial reference frames.

Corollary #1

You cannot tell if you are moving (based on local measurements) in an inertial frame.

Corollary #2: Universal speed of light
The speed of light in vacuum is the same in all inertial frames, regardless of the
motion of the source.



Special Relativity Ginstein)

Principle of Relativity
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‘ Length contraction & time dilation



Special Relativity
Length Contraction

In the x’-y’ inertial frame

Consider a rod of length L' = L,, as measured in the
x’-y’ inertial frame (i.e. the rest frame of the rod).
Note: The rod is aligned with the axis of motion
along x.



Special Relativity
Length Contraction

In the x’-y’ inertial frame
Consider a rod of length L' = L,, as measured in the

Vv
x’-y’ inertial frame (i.e. the rest frame of the rod). y’ q
Note: The rod is aligned with the axis of motion Ix
along x’. y —_

x)
In the x-y inertial frame X

If you measure the length of the rod, then you will

Note: the length contraction is only along
the axis of motion. Along axes perpendicular
to the motion, there is no change in length.



Length Contraction: Example

Consider a spaceship travelling past a spherical star at 90% of the speed of light.

spaceship

q

velocity U

Question: What is the shape of the star in
the frame of the spaceship?
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Quantitative answer

In the rest frame of the spaceship, we have

R 1
Y v
1-=
C
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h
X
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Length Contraction: Example
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O R’ =R,

In the rest frame of the spaceship, we have

O

Rx=—WIth V= > >
fl_v_ \/1_( O9c)

= 2.29

\/1 —0.81
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Consider a spaceship travelling past a spherical star at 90% of the speed of light.

Quantitative answer

O R’ =R,

In the rest frame of the spaceship, we have

Rx=—0
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Length Contraction: Example

Consider a spaceship travelling past a spherical star at 90% of the speed of light.

Quantitative answer

O R’ =R,

Q
y
In the rest frame of the spaceship, we have - .
X

O

Rest frame of the spaceship

y' —P star
h
X

R

y

velocity —V

\/1 —0.81

Ro
Thus Rx = m = 043R0

= 2.29

R, =— with ¥ = :
x \/z \/1 ~ (=0.9¢)? 9c)2 ) spaceship

Answer: The star appears/is compressed to 43% of its
original size along the direction of travel.
The transverse directions are unaffected.
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