Today's Topics

Wednesday, April 2, 2025 (Week 9, lecture 24) – Chapter 24.

A. Review of Midterm Topics

A. Gravitational Waves.

B. Black holes.

Problem Set #7 is due on ExpertTA on Friday, April 4, 2025, by 9:00 AM

Midterm #2 will be on Monday, April 7, 2025.

Midterm #2 topics

Midterm #1 background physics

- 1. Scientific units, notations, exponents, trigonometry
- 2. Kepler's Laws + Newton's vers. of 3rd law
- 3. Newton's laws and gravity
- 4. Conservation laws: Energy, momentum, angular momentum
- 5. Kinetic & Potential Energy
- 6. Circular Motion
- 7. Escape velocity
- 8. Electromagnetic spectrum
- 9. Blackbody radiation
- 10. Photons & Spectroscopy
- 11. Doppler effect
- 12. Nuclear particles & P-P chain fusion

Midterm #2 topics

Midterm #1 background physics

- 1. Scientific units, notations, exponents, trigonometry
- 2. Kepler's Laws + Newton's vers. of 3rd law
- 3. Newton's laws and gravity
- 4. Conservation laws: Energy, momentum, angular momentum
- 5. Kinetic & Potential Energy
- 6. Circular Motion
- 7. Escape velocity
- 8. Electromagnetic spectrum
- 9. Blackbody radiation
- 10. Photons & Spectroscopy
- 11. Doppler effect
- 12. Nuclear particles & P-P chain fusion

MAIN TOPICS

- A. Telescopes, angular resolution
- B. Our Sun
- C. Luminosity, magnitude
- D. Luminosity vs mass, H-R diagram
- E. Main sequence stellar evolution
- F. Red giant, planetary nebula, white dwarf
- G. Pauli exclusion principle
- H. Evolution of massive stars
- I. Type 2 supernova physics, neutrinos
- J. Neutron stars, pulsars
- K. Origin of the elements
- L. Special relativity: length contraction, time dilation
- M. General relativity, gravitational waves
- N. Black holes

Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

 \rightarrow a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

> Only large masses emit significant gravitational waves.

- → Orbiting **black holes** and **neutron stars**.
- \rightarrow Masses must be close together (i.e. fast moving) for significant emission.

Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

 \rightarrow a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

- > Only large masses emit significant gravitational waves.
 - → Orbiting **black holes** and **neutron stars**.
 - \rightarrow Masses must be close together (i.e. fast moving) for significant emission.

A passing gravitational wave applies weak pulling & stretching forces along two perpendicular axes.

Gravitational Waves

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).

→ a change in gravity's strength propagates at the speed of light. (i.e. it's not instantaneous.)

- > Only large masses emit significant gravitational waves.
 - → Orbiting **black holes** and **neutron stars**.
 - \rightarrow Masses must be close together (i.e. fast moving) for significant emission.

A passing gravitational wave applies weak pulling & stretching of <u>space</u> along two perpendicular axes (and <u>time</u>).

Gravitational Wave "Telescope" LIGO: Laser Interferometer Gravitational-Wave Observatory

Black Holes

Black hole

A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

Black Holes

Black hole

A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

Schwarzchild radius= $R_S = \frac{2GM}{c^2}$

The **event horizon** is about 2-3 times smaller than the black shadow.

Supermassive black hole at center of M87 galaxy.

Black Holes

Black hole

A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the **event horizon** (i.e. **Schwarzchild radius**) can escape.
- \rightarrow Light emitted within the **event horizon** cannot escape.
- \rightarrow The event horizon / Schwarzchild radius defines the size and surface of a black hole.

Schwarzchild radius= $R_S = \frac{2GM}{c^2}$

The **event horizon** is about 2-3 times smaller than the black shadow.

PollEv Quiz: PollEv.com/sethaubin

2020 Nobel Prize in Physics Black Hole Physics & Astronomy

Roger Penrose (U. of Oxford)

Reinhard Genzel (Max Planck Inst.)

Andrea Ghez (UC Los Angeles

2020 Nobel Prize in Physics Black Hole Physics & Astronomy

Roger Penrose (U. of Oxford)

Black hole physics & mathematics Discovery of the black hole at the center of our Milky Way galaxy

Reinhard Genzel (Max Planck Inst.)

Andrea Ghez (UC Los Angeles

Black Hole at center of Milky Way

The Sagittarius A* supermassive black hole

Black Hole at center of Milky Way

The Sagittarius A* supermassive black hole

Mass = 4 million M_{Sun}

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled** apart by the tidal force from the central mass (i.e. Sun, Saturn, black hole, etc). (gravity gradient)

- \rightarrow The Roche limit depends on nature of body (solid, fluid, density).
- \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

Far outside the Roche limit radius, the tidal force and deformation are weak.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled** apart by the tidal force from the central mass (i.e. Sun, Saturn, black hole, etc). (gravity gradient)

- \rightarrow The Roche limit depends on nature of body (solid, fluid, density).
- \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

Close to the Roche limit radius, the tidal force and deformation are strong.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled** apart by the tidal force from the central mass (i.e. Sun, Saturn, black hole, etc). (gravity gradient)

- \rightarrow The Roche limit depends on nature of body (solid, fluid, density).
- \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

At the Roche limit radius and within it, the tidal force and deformation pull the planet/moon/star apart.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled** apart by the tidal force from the central mass (i.e. Sun, Saturn, black hole, etc). (gravity gradient)

- \rightarrow The Roche limit depends on nature of body (solid, fluid, density).
- \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

At the Roche limit radius and within it, the tidal force and deformation pull the planet/moon/star apart.

The Roche limit is the orbital radius at which a gravitational bound object will be **pulled** apart by the tidal force from the central mass (i.e. Sun, Saturn, black hole, etc). (gravity gradient)

- \rightarrow The Roche limit depends on nature of body (solid, fluid, density).
- \rightarrow Proposed by Eduard Roche in 1848 (French astronomer).

At the Roche limit radius and within it, the tidal force and deformation pull the planet/moon/star apart.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object pulled apart by the black hole.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object **pulled apart** by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object **pulled apart** by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Gravitational time dilation: The object appears to slow down as it gets closer and closer to the event horizon.

Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is **pulled apart** (spaghettified) by the strong **gravity gradient** (<u>tidal force</u>) of the black hole.

Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object pulled apart by the black hole.

What happens if you watch an object fall into a black hole ?

Gravitational redshift: As the object falls its light becomes redder and eventually shifts into radio-waves.

Gravitational time dilation: The object appears to slow down as it gets closer and closer to the event horizon.

→ Very close to the event horizon, the object becomes too redshifted to be well seen and also appears to come to a standstill.

(note: in frame of object, the object falls into black hole.)