## **Today's Topics**

Monday, March 31, 2025 (Week 9, lecture 23) – Chapter 24.

- A. Special Relativity review.
- B. General Relativity.
- C. Gravitational redshift.
- D. Gravitational Waves.
- E. Black holes.

Problem Set #7 is due on ExpertTA on Friday, April 4, 2025, by 9:00 AM

Midterm #2 will be on Monday, April 7, 2025.

## **Today's Topics**

Monday, March 31, 2025 (Week 9, lecture 23) – Chapter 24.

A. Special Relativity review.

What happens when you travel close to the speed of light "c"

- B. General Relativity.
- C. Gravitational redshift.
- D. Gravitational Waves.
- E. Black holes.

## **Today's Topics**

Monday, March 31, 2025 (Week 9, lecture 23) – Chapter 24.

A. Special Relativity review.

What happens when you travel close to the speed of light "c"

B. General Relativity.

What happens when you have very strong gravity

- C. Gravitational redshift.
- D. Gravitational Waves.
- E. Black holes.

## Special Relativity (REVIEW)

#### **Principle of Relativity**

The laws of physics are the same in all inertial reference frames.

#### **Corollary #1**

You cannot tell if you are moving (based on local measurements) in an inertial frame.

#### **Corollary #2: Universal speed of light**

The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.

## Special Relativity (REVIEW)

#### **Principle of Relativity**

The laws of physics are the same in all inertial reference frames.

#### **Corollary #1**

You cannot tell if you are moving (based on local measurements) in an inertial frame.

#### **Corollary #2: Universal speed of light**

The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.



Length contraction & time dilation

## Special Relativity (REVIEW)

#### **Principle of Relativity**

The laws of physics are the same in all inertial reference frames

#### **Corollary #1**

You cannot tell if you are moving (based on local measurements) in an inertial frame.

#### **Corollary #2: Universal speed of light**

The speed of light in vacuum is the same in all inertial frames, regardless of the motion of the source.



Length contraction & time dilation

## **General Relativity**


#### **Equivalence Principle**

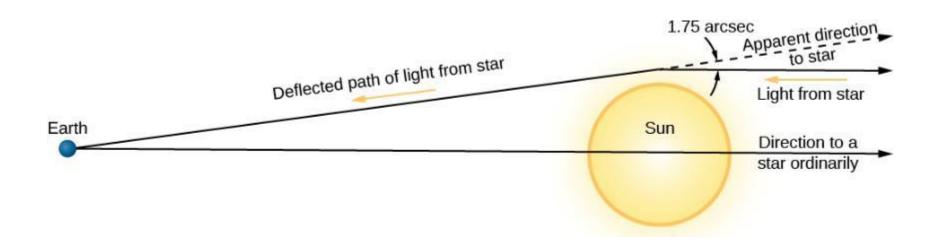
A coordinate system that is falling freely in a gravitational field is (equivalent to) an inertial frame.

#### **Corollary**

You cannot tell if you are at rest in a non-gravitational field (i.e. in a standard inertial frame) or freely falling under gravity based on local measurements.

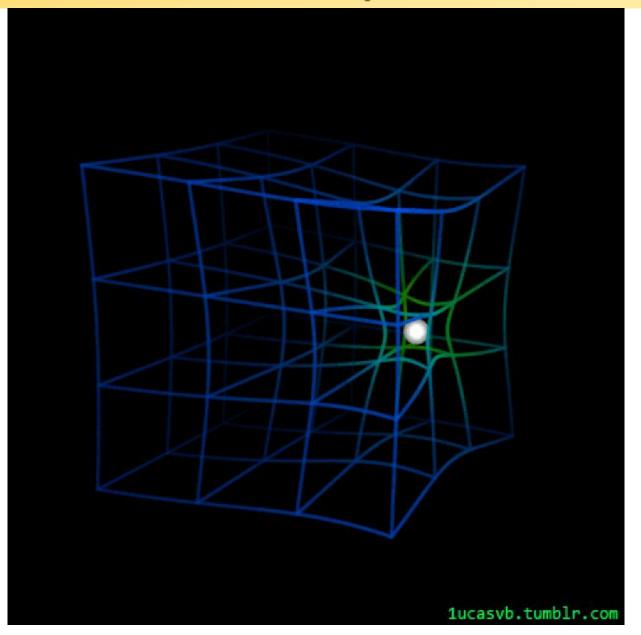
# **Equivalence Principle on ISS**



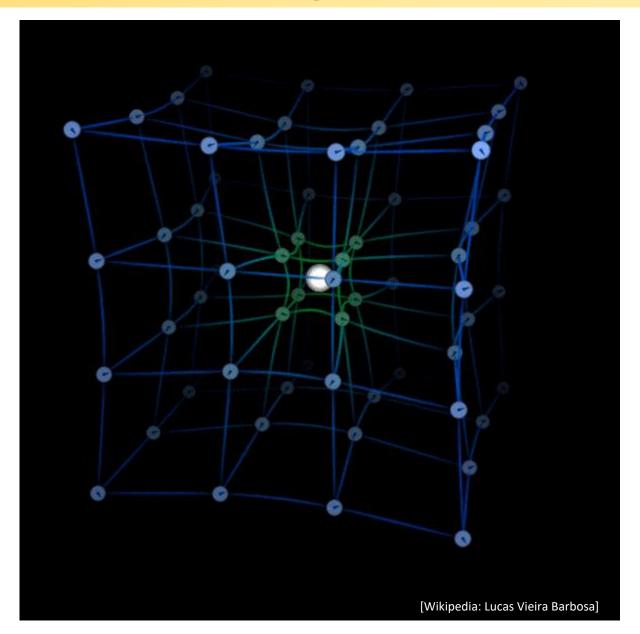

## **Curved Space-Time: light rays in 2D**



## **Curved Space-Time**


## Eddington's measurement of deflection of light

- > Arthur Eddington measures the deflection of starlight by the Sun.
- > 1919 solar eclipse: West Africa & Brazil.
- ➤ The star appears shifted: Measurements show deflection that agrees with General Relativity.




[OpenStax: Astronomy]

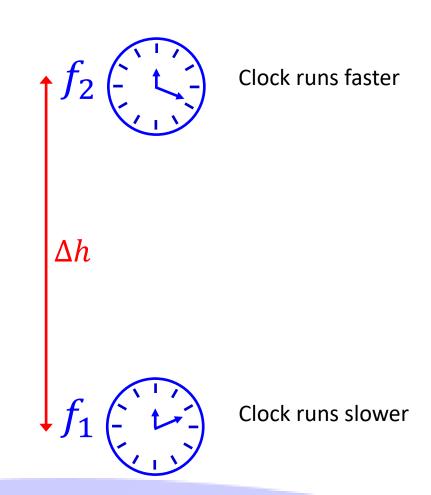
# **Curved Space-Time**



# **Curved Space-Time**



## **Gravitational Time Dilation: small heights**


Clocks in a gravitational field run slower than clocks in free space.

For small changes in height  $\Delta h$ :

$$\frac{\Delta f}{f} = \frac{g\Delta h}{c^2}$$

f = frequency of clock

g = acceleration of gravity = 9.8 m/s<sup>2</sup> at Earth's surface



## **Gravitational Time Dilation: large distances**

Clocks in a gravitational field run slower than clocks in free space.

$$\frac{f_2}{f_1} = \sqrt{\frac{1 - \frac{R_s}{R_2}}{1 - \frac{R_s}{R_1}}}$$

 $R_2 \uparrow f_2 \left( \begin{array}{c} \\ \\ \end{array} \right)$ 

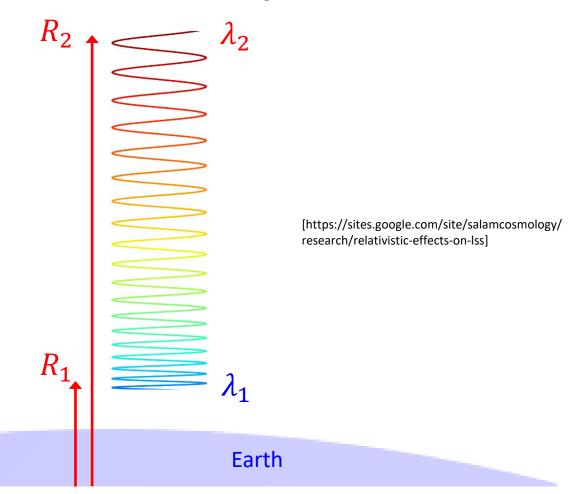
Clock runs faster

 $f_{1,2}$  = frequencies at  $R_1$  and  $R_2$ .

$$R_S =$$
 Schwarzchild radius 
$$= \frac{2GM}{c^2}$$

M =mass of Earth, star, etc.

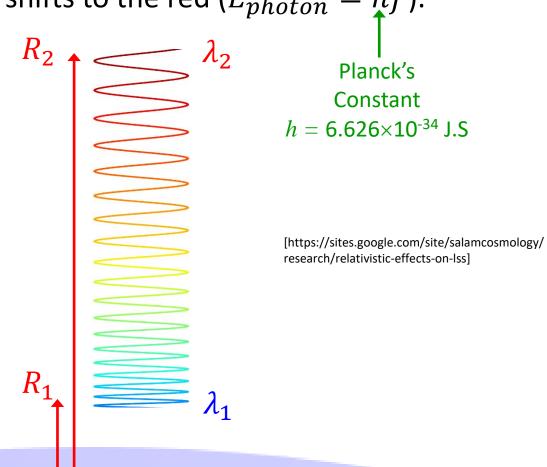



Clock runs slower

Earth

### **Gravitational Redshift:**

## Light shifts to the **red** when it escapes gravity


As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ( $E_{photon}=hf$ ).



#### **Gravitational Redshift:**

## Light shifts to the **red** when it escapes gravity

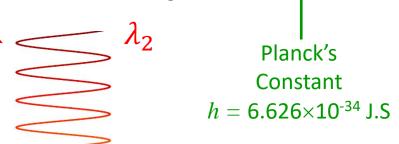
As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ( $E_{photon} = hf$ ).



Earth

#### **Gravitational Redshift:**

## Light shifts to the **red** when it escapes gravity


As light leaves the gravitational pull of Earth/star/blackhole, it loses "kinetic energy" and shifts to the red ( $E_{photon} = hf$ ).

$$\frac{\lambda_2}{\lambda_1} = \sqrt{\frac{1 - \frac{R_s}{R_2}}{1 - \frac{R_s}{R_1}}}$$

 $\lambda_{1,2}$  = wavelengths at R<sub>1</sub> and R<sub>2</sub>.

$$R_S =$$
 Schwarzchild radius
$$= \frac{2GM}{C^2}$$

M =mass of Earth, star, etc.



[https://sites.google.com/site/salamcosmology/research/relativistic-effects-on-lss]

 $\lambda_1$ 

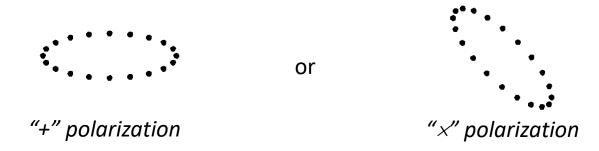
Earth

#### **Gravitational Waves**

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).
  - → a change in gravity's strength propagates at the speed of light.
    (i.e. it's not instantaneous.)
- > Only large masses emit significant gravitational waves.
  - → Orbiting **black holes** and **neutron stars**.
  - → Masses must be close together (i.e. fast moving) for significant emission.

### **Gravitational Waves**

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).
  - → a change in gravity's strength propagates at the speed of light.


    (i.e. it's not instantaneous.)
- Only large masses emit significant gravitational waves.
  - → Orbiting **black holes** and **neutron stars**.
  - → Masses must be close together (i.e. fast moving) for significant emission.
- ➤ A passing gravitational wave applies weak pulling & stretching forces along two perpendicular axes.



### **Gravitational Waves**

- Accelerating and orbiting masses will emit gravitational waves.
- Gravitational waves are a consequence of the finite speed of gravity (speed of light).
  - → a change in gravity's strength propagates at the speed of light.

    (i.e. it's not instantaneous.)
- Only large masses emit significant gravitational waves.
  - → Orbiting **black holes** and **neutron stars**.
  - → Masses must be close together (i.e. fast moving) for significant emission.
- A passing gravitational wave applies weak pulling & stretching of **space** along two perpendicular axes (and <u>time</u>).



## **Gravitational Wave "Telescope"**

LIGO: Laser Interferometer Gravitational-Wave Observatory



## **Black Holes**

#### Black hole

A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the event horizon (i.e. Schwarzchild radius) can escape.
- → Light emitted within the **event horizon** cannot escape.
- → The event horizon / Schwarzchild radius defines the size and surface of a black hole.

## **Black Holes**

#### **Black hole**

A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the event horizon (i.e. Schwarzchild radius) can escape.
- → Light emitted within the **event horizon** cannot escape.
- → The event horizon / Schwarzchild radius defines the size and surface of a black hole.

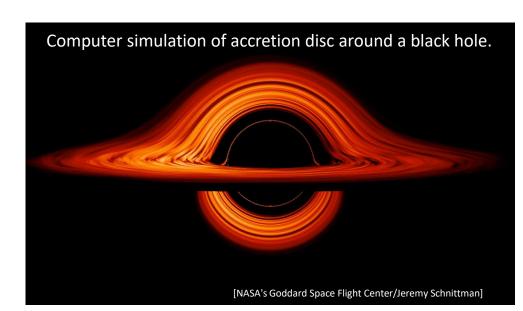
Schwarzchild radius= 
$$R_S = \frac{2GM}{c^2}$$

The **event horizon** is about 2-3 times smaller than the black shadow.



## **Black Holes**

#### Black hole


A celestial object whose gravity is so strong that even light cannot escape from it.

- → Light emitted outside of the event horizon (i.e. Schwarzchild radius) can escape.
- → Light emitted within the **event horizon** cannot escape.
- → The event horizon / Schwarzchild radius defines the size and surface of a black hole.

Schwarzchild radius= 
$$R_S = \frac{2GM}{c^2}$$

The **event horizon** is about 2-3 times smaller than the black shadow.





# PollEv Quiz: PollEv.com/sethaubin

# **2020 Nobel Prize in Physics Black Hole Physics & Astronomy**



Roger Penrose (U. of Oxford)



Reinhard Genzel (Max Planck Inst.)



Andrea Ghez (UC Los Angeles

# **2020 Nobel Prize in Physics Black Hole Physics & Astronomy**

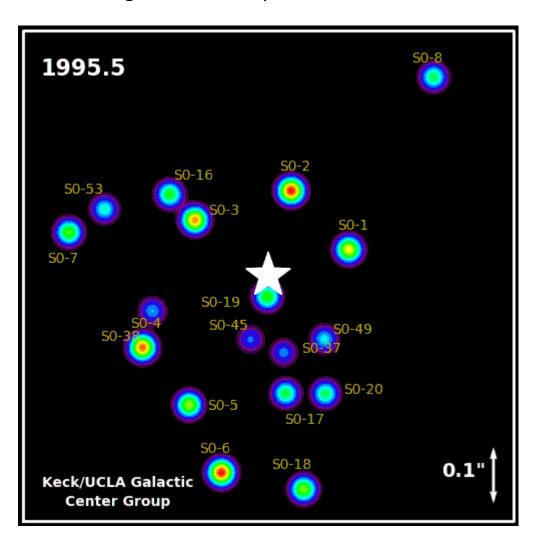


Roger Penrose (U. of Oxford)

Black hole physics & mathematics

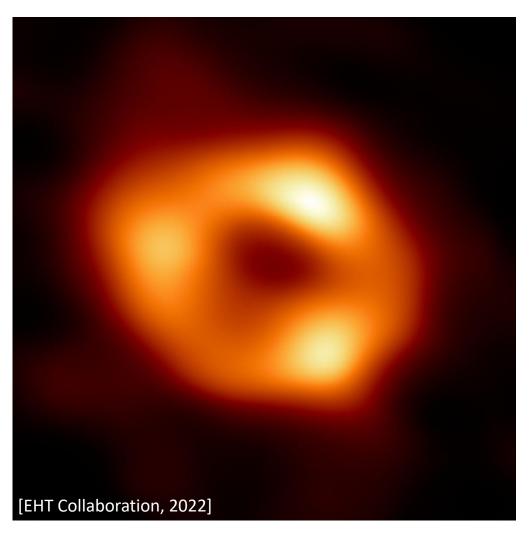


Reinhard Genzel (Max Planck Inst.)




Andrea Ghez (UC Los Angeles

Discovery of the black hole at the center of our Milky Way galaxy


# Black Hole at center of Milky Way

The Sagittarius A\* supermassive black hole



# Black Hole at center of Milky Way

The Sagittarius A\* supermassive black hole



Mass = 4 million  $M_{Sun}$ 

#### Stellar mass black hole

- The **Roche limit** is well <u>outside</u> of the event horizon.
- Any object falling towards the event horizon is pulled apart (spaghettified) by the strong gravity gradient (tidal force) of the black hole.

#### Stellar mass black hole

- The **Roche limit** is well **outside** of the event horizon.
- Any object falling towards the event horizon is pulled apart (spaghettified) by the strong gravity gradient (tidal force) of the black hole.

#### Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object pulled apart by the black hole.

#### Stellar mass black hole

- The **Roche limit** is well **outside** of the event horizon.
- Any object falling towards the event horizon is pulled apart (spaghettified) by the strong gravity gradient (tidal force) of the black hole.

#### Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object pulled apart by the black hole.

#### What happens if you watch an object fall into a black hole?

**Gravitational redshift:** As the object falls its light becomes redder and eventually shifts into radio-waves.

#### Stellar mass black hole

- The Roche limit is well outside of the event horizon.
- Any object falling towards the event horizon is pulled apart (spaghettified) by the strong gravity gradient (tidal force) of the black hole.

#### Supermassive black hole

- The Roche limit is well inside of the event horizon.
- Only after passing the event horizon is an object pulled apart by the black hole.

#### What happens if you watch an object fall into a black hole?

**Gravitational redshift:** As the object falls its light becomes redder and eventually shifts into radio-waves.

**Gravitational time dilation:** The object appears to slow down as it gets closer and closer to the event horizon.

#### Stellar mass black hole

- The **Roche limit** is well **outside** of the event horizon.
- Any object falling towards the event horizon is pulled apart (spaghettified) by the strong gravity gradient (tidal force) of the black hole.

#### Supermassive black hole

- The **Roche limit** is well <u>inside</u> of the event horizon.
- Only after passing the event horizon is an object pulled apart by the black hole.

#### What happens if you watch an object fall into a black hole?

**Gravitational redshift:** As the object falls its light becomes redder and eventually shifts into radio-waves.

**Gravitational time dilation:** The object appears to slow down as it gets closer and closer to the event horizon.

→ Very close to the event horizon, the object becomes too redshifted to be well seen and also appears to come to a standstill.

(note: in frame of object, the object falls into black hole.)