

Physics 172

Stellar Astronomy & Cosmology

Spring 2026

William & Mary

Instructors

Prof. Seth Aubin

Office: room 255, Small Hall, tel: 1-3545

Lab: room 069, Small Hall (new wing), tel: 1-3532

e-mail: saaubi@wm.edu

web: <http://www.physics.wm.edu/~saubin/index.html>

Russell Tanner

Office: room 220, Small Hall

e-mail: rjtanner@wm.edu

Office hours:

Aubin: T & Th noon - 1 pm, or anytime (open office hours)

Tanner: Th 2-3 pm

Course Objectives

Introduce **stellar** astronomy and **cosmology**

→ Concepts, Methods, and Science.

Course Objectives

Introduce **stellar** astronomy and **cosmology**

→ Concepts, Methods, and Science.

The course will cover the following topics:

- Basic physics: motion, **gravity**, light, matter, **fusion**, tidal forces.
- The night sky: constellations.
- Spectroscopy: identifying atom & molecules from their light.
- Astronomy instruments: optical, radio, x-ray telescopes & LIGO.

Course Objectives

Introduce **stellar** astronomy and **cosmology**

→ Concepts, Methods, and Science.

The course will cover the following topics:

- Basic physics: motion, **gravity**, light, matter, **fusion**, tidal forces.
- The night sky: constellations.
- Spectroscopy: identifying atom & molecules from their light.
- Astronomy instruments: optical, radio, x-ray telescopes & LIGO.
- Solar systems: Sun, solar system, stars, and exo-planets.
- Main sequence stars, stellar evolution.
- Special stars: dwarfs, Cepheids, neutron stars, black holes.
- Exploding stars: novae, supernovae, mergers.
- Einstein's relativity: Special & General Relativity.

Course Objectives

Introduce **stellar** astronomy and **cosmology**

→ Concepts, Methods, and Science.

The course will cover the following topics:

- The Milky Way galaxy, galaxy types, **dark matter**.
- Galaxy clusters, the expanding universe, **dark energy**.
- Big Bang, inflation, the cosmic microwave background.
- Future of the universe, multiverses.

Course Materials

Text: A significant fraction of the course materials and problem sets will be taken from the following required texts for the course:

Astronomy (2nd Ed.) by A. Fraknoi, D. Morisson, and S. C. Wolff
[OpenStax (Rice U.), 2022]

→ Download for free at:

<https://openstax.org/details/books/astronomy-2e/>

Note: Swem Library has 2 hardcopies.

Course materials will be posted on:

- Blackboard course site
- Prof. Aubin website:

https://saaubi.people.wm.edu/TeachingWebPages/Physics172_Spring2026/Physics172_Spring2026.html

Course Work

- **Problem sets:** roughly every week.
- **Participation:** attendance, questions/discussion, quizzes.
- **Papers** for the 2 interludes.
- **Midterm:** 2 midterm tests.
- **Final** covers all course material with emphasis on end of semester.

Participation:	10%
Problem sets:	20%
Interlude Papers (2):	25%
Midterms (2):	25%
<u>Final Exam:</u>	<u>20%</u>
Total =	100%

Usage

- Class discussion questions (ungraded).
- Participation gauge.
- In-class quizzes.
- Starts next week (January 27-31).

Sign-up

- Free
- Use mobile device (tablet, phone) or laptop.
- Sign-up instructions (see syllabus for details):
<https://polleverywhere.com/login>
- Upon entering a W&M email address, you will be prompted to sign in via Single-Sign On (SSO) with your W&M credentials.

Problem Sets (I)

- Important for verifying and deepening understanding of **text chapters** and **lectures**.
- Typically, one week to complete and due on **Fridays**.
- 5-10 problems, mostly quantitative, some qualitative.
- Turn in on **ExpertTA** ... sometimes hard copy (in-class).
- A random sample of problems will be graded for hard copies.
- Source for some midterm test problems (and final exam).

Problem Sets (II)

You should complete the problem sets on your own.

Allowed

- “Verbal” discussion of problems between students.
- Ask for assistance during office hours.
- **Physics SPS tutoring (free): Thursdays 6-8 pm (room 122).**
- Consultation of written references (and internet).

Not Allowed (i.e., honor code violation)

- Equation-based numerical discussions (with writing).
- Collaborative effort with other students.
- Consultation of solution manual.
- Artificial intelligence generated solutions (e.g., ChatGPT).

Problem Sets (III)

You must setup an **ExpertTA** account (\$35 USD) by going to the website:

<https://reg.theexpertta.com/USA48VA-7E9F13-408>

[Please use your **W&M username**]

Most of the problem sets will be submitted on ExpertTA

- ExpertTA will provide results on which questions were answered correctly and which were not.
- Hints and feedback will usually be provided for incorrect answers.
- For most questions (except true/false questions), multiple attempts will be allowed.
- Points will be deducted for multiple submissions, and the use of hints and feedback.

Interludes (COLL 200)

Interlude I: Humanity and the stars.

→ reaches out to CSI & ALV domains.

CSI = Cultures, Societies, & Individuals

ALV = Arts, Letters, and Values

Interlude II: The “great debate” of 1920.

→ Is the Milky Way = Universe (or galaxy) ?

→ reaches out to CSI & ALV domains.

Interlude Structure

Readings, discussions, short papers, presentations (maybe).

Course work

2 papers: one for each interlude, 4-5 pages.

Schedule (I)

Week 0: 1/21-23

Intro to Astronomy [Ch. 1, 2]

Overview, units, distance scales, time, atoms to galaxies, radius of the Earth.

Week 1: 1/26-30*

Basic Physics I: Motion and Orbits [Ch. 3]

Constellations, gravity, orbits, Kepler' laws, seasons, precession, parallax.

Week 2: 2/2-6

Basic Physics II: Newton and Gravity [Ch. 3]

Kepler's laws, Galileo, Newton's laws, conservation laws, gravity, circular motion, tides.

Week 3: 2/9-13

Basic Physics III: Light and Matter [Ch. 5, 16.1-2]

Electromagnetic waves, blackbody radiation, photons, atoms, fusion, Doppler effect.

Week 4: 2/16-20

Astronomy Instruments [Ch. 6]

MIDTERM #1. Telescopes, resolution, adaptive optics, interferometry, space telescopes.

***Add/drop deadline: Friday, January 30, 2026**

Schedule (II)

Week 5: 2/23-27

Stars I: Our Sun & Main Sequence Stars [Ch. 15, 16, 17]

Structure, solar wind, sunspots, fusion, star brightness and temperature.

Week 6: 3/2-6

Stars II: Stellar Evolution [Ch. 17, 18, 19, 22]

Luminosity vs mass, H-R diagram, spectroscopy, star types, stellar birth & exo-planets.

----- Spring Break -----

Week 7: 3/16-20

Stars III: Stellar Death [Ch. 22, 23]

Helium fusion and beyond, red giants, white dwarfs, novae, supernovae, neutron stars.

Interlude I paper: Humanity and the stars.

Week 8: 3/23-27**

Black Holes & Einstein's Relativity [Ch. 24]

Special & general relativity, spacetime, gravitational redshift, black holes.

Week 9: 3/30-4/3

Galaxies I: Milky Way and Galaxy Types [Ch. 25, 26]

MIDTERM #2. The Milky Way galaxy, Shapley-Curtis debate, galaxy types, dark matter.

****Withdraw deadline: Monday, March 23, 2026**

Schedule (III)

Week 10: 4/6-10

Galaxies II: Galaxy Structures [Ch. 26, 27]

Galaxy types, distance ladder, expanding universe, quasars, supermassive black holes.

Week 11: 4/13-17

Galaxies III: Galaxy Clusters and Evolution [Ch. 28]

Galaxy mergers, distribution of galaxies in space, dark matter again, dark energy.

Week 12: 4/20-24

The Big Bang Theory [Ch. 29]

Birth and age of the universe, cosmic microwave background, inflation hypothesis.

Interlude II paper: Humanity and the universe.

Week 13: 4/27-5/1

The Universe [Ch. 29]

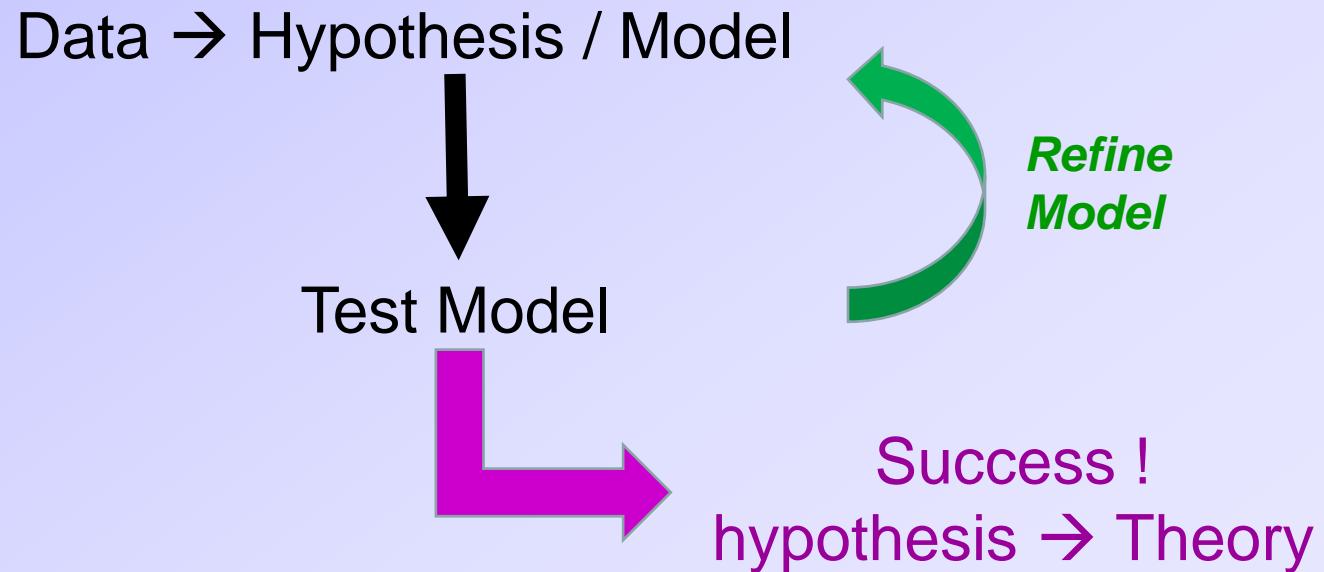
Future of the universe, multiverses, limits of science, philosophy, and religion.

----- Classes Finish -----

May 6, 2026, 9am-noon

Final Exam

What is **Science** ?


What is **Science** ?

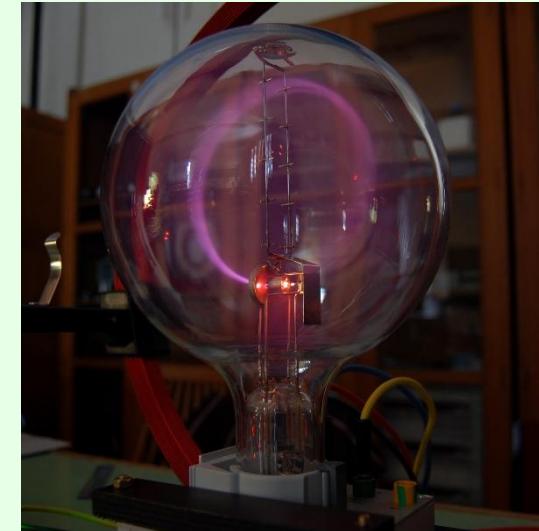
- **Model** of reality.
- **Testable** facts and model (hypothesis).
... constantly evolving and getting more accurate.

What is **Science** ?

- **Model** of reality.
- **Testable** facts and model (hypothesis).
... constantly evolving and getting more accurate.

“*Scientific method*”:

How accurate can a Theory be?


Electron's magnetic “g-factor”

Schrodinger's theory: $g_e = 1.0$

Dirac relativistic theory: $g_e = 2.0$

Present day quantum physics: $g_e = 2.002\ 319\ 304\ 362$

12-digits

[Wikipedia, 2009]

Theory and experiment agree to 9 digits !!!

What is **Astronomy** ?

- The study of stars, planets, galaxies, and space.
 - we are constantly discovering new objects in space.

What is **Astronomy** ?

- The study of stars, planets, galaxies, and space.
 - we are constantly discovering new objects in space.
- OpenStax text: “Study of objects that lie beyond our planet Earth and the processes by which these objects interact with one another.”

What is **Astronomy** ?

- The study of stars, planets, galaxies, and space.
 - we are constantly discovering new objects in space.
- OpenStax text: “Study of objects that lie beyond our planet Earth and the processes by which these objects interact with one another.”
- Observational science, with physics-based models/theories.

Can science on Earth
explain
astronomical phenomena ?

Can science on Earth explain astronomical phenomena ?

Answer: As best we can tell, **science/physics** developed from Earth-based experiments **can explain all** observed astronomical phenomena.

Can science on Earth explain astronomical phenomena ?

Answer: As best we can tell, **science/physics** developed from Earth-based experiments **can explain all** observed astronomical phenomena.

Exceptions:
Big Bang, dark matter, and dark energy (... black holes).

Scientific Units

Scientific Notation

Antares
dust & gas clouds
“Astronomy Picture of the Day”