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Tutorial problem: Interferometric detection of gravitational waves 

This tutorial problem is designed to teach the special relativity and general relativity involved in 

gravitational wave detection with an optical interferometer, though some special relativity 

knowledge is assumed. The questions posed are not mathematically challenging, but they make 

use of some non-intuitive concepts. The tutorial is based on a paper by P. R. Saulson [Am. J. Phys. 

65, 501 (1997)], as well as discussions with Prof. J. Erlich. 

 

Gravitational wave review: We consider a weak gravitational wave propagating in the +z direction 

with its polarization axes aligned with x and y axes. This weak gravitational wave can be described 

as a travelling perturbation ℎ𝜇𝜈 to the flat-space metric 𝑔𝜇𝜈 (in the “traceless transverse” gauge): 

𝑔𝜇𝜈 = [

−1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

] + [

0 0
0 ℎ+

0 0
ℎ× 0

0 ℎ×

0 0
−ℎ+ 0

0 0

] 𝑒𝑖(Κ𝑧−Ω𝑡) 

where ℎ+ and ℎ× are the amplitudes of the “plus” polarization (along x and y axes) and “cross” 

polarization (along the axes at 45 degrees to the x and y axes) of the quadrupole deformation 

induced by the gravitational wave, as shown in the figure below. The ℎ+ and ℎ× amplitudes 

represent the fractional stretching and compressing (i.e. strain) of distances in the x-y plane, which 

is typically extremely small – the largest gravitational strain measured by LIGO is ℎ~10−21. The 

wavevector K and frequency  of the wave are related by Ω Κ⁄ = 𝑐, where c is the speed of light 

(and gravitational waves) in vacuum – in this tutorial, we consider waves with Ω~2𝜋 × 100 Hz. 

 
The quadrupole deformation of space by the gravitational wave can be expressed as a linear 

combination of the “+” and “” polarizations (i.e deformations). T is the period of the wave. 

In the transverse traceless gauge coordinate system of general relativity, the coordinate 

tickmarks are indicated by a matrix of free test masses, which are subject to gravity (and 

gravitational waves). If we define “coordinate distance” by the number of tickmarks between two 

given free masses, then gravity cannot alter the “coordinate distance” between them. In contrast, 

the “proper distance” is defined by the metric through the use of the infinitesimal space-time 

separation 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈, which is altered by gravity and is also reference frame invariant. 
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Interferometer review: A Michelson 

interferometer, such as the one used by the 

LIGO gravitational wave observatory, 

measures the optical path length difference 

(i.e. phase difference) between two beams of 

light that travel down two perpendicular 

arms of equal length L. The two beams are 

produced by directing laser light on 50/50 

beamsplitter. The light is also recombined 

when the beams from two arms return to it: 

depending on the phase difference between 

the two arms, roughly half the light returns 

towards the laser, while the remaining light 

is directed on a photodetector. 

Importantly, the two mirrors and the 

beamsplitter are suspended so that they 

behave as free masses when subject to a 

gravitational force or wave, i.e. L can be 

stretched or compressed by a gravitational wave. At LIGO, the length of the arms is L = 4 km, but 

the addition of Fabry-Perot cavities in each arm (not shown in figure) results in effective arm 

lengths of L=1120 km. LIGO uses laser light with a wavelength of 1064 nm.  

 

Questions 

A. General relativity analysis using the transverse traceless gauge 

a1) We consider a “plus” polarized gravitational wave. 

- Show that two nearby space-time events with infinitesimal separations in time, dt, and space, dx 

and dy, have a frame invariant space-time separation ds given by: 𝑑𝑠2 = −𝑐2𝑑𝑡2 + (1 +

ℎ+(𝑡))𝑑𝑥2 + (1 − ℎ+(𝑡))𝑑𝑦2. 

Here the time dependence of ℎ+(𝑡) is given by the propagating plane wave nature of the 

gravitational wave. 

 

a2) A central tenet of relativity is that the local speed of light in vacuum is the same in all inertial 

frames (including those under the influence of gravity), so that for a light ray trajectory 𝑑𝑠 = 0. 

Consider a light ray (or wave) that propagates along the x-axis or y-axis (in the interferometer’s 

reference frame). 

- Show that the time for the light ray to propagate along these axes of the interferometer is given 

by 

 𝜏𝑥 ≃
1

𝑐
∫ (1 +

ℎ+(𝑡)

2
) 𝑑𝑥 and 𝜏𝑦 ≃

1

𝑐
∫ (1 −

ℎ+(𝑡)

2
) 𝑑𝑦 

Important: In the transverse traceless gauge picture, the tickmarks of the coordinate system are 

indicated by free masses (which are subject to gravity). These tickmark free masses “move” with 
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the gravitational wave, but since there is no change in the number of tickmarks between free 

masses, the two integrals should be done over the coordinates from x=0 to x=L (and y=0 to y=L). 

 

a3) Typically the period of the gravitational wave 𝑇 = 2𝜋/Ω is quite long compared to the round-

trip travel time for a light ray in an interferometer arm, so that the interferometer arm length is 

quasi-static over the duration of propagation of a light pulse in either arm. 

- If we direct simultaneously two light pulses down each interferometer arm (starting at the 

beamsplitter), then show that the maximum difference in arrival times for the two light pulse back 

at the beamsplitter is given by Δ𝜏 = 2𝐿ℎ+/𝑐. Estimate Δ𝜏 in seconds and the corresponding spatial 

shift between the two pulses in meters. 

- If instead we direct a continuous wave laser beam with wavelength 𝜆 into the beamsplitter and 

down the two interferometer arms, then show that the maximum phase difference between the two 

light waves when they recombine at the beamsplitter is given by Δ𝜙 = 4𝜋𝐿ℎ+/𝜆. Estimate Δ𝜙 in 

radians. 

 

B. “Rubber Ruler” Paradox: Since light waves are stretched by gravitational waves, then how 

can we use light as a ruler to detect gravitational waves? This section resolves this paradox. 

Quasi-Newtonian view of weak gravitational waves 

Question: What does it mean that space is stretched (compressed) by a gravitational wave? 

Answer: The distance between two nearby free-floating test masses will increase (decrease) by a 

factor of 1 + ℎ+/2, as measured by a rigid ruler. In the quasi-Newtonian picture, the free-floating 

tests masses move due to the gravitational “force” from the gravitational wave. The rigid ruler 

does not change length because the electromagnetic interactions holding its atoms together 

completely overwhelm the gravitational force. Since a light wave is subject to gravity, it behaves 

as a train of free masses, and so the wavelength of a light wave is increased (decreased) also by a 

factor of 1 + ℎ+/2 by a passing gravitational wave. 

 

b1) Naïve calculation 

We examine the interferometer when the x-axis is maximally stretched and the y-axis is maximally 

compressed by the gravitational wave (quasi-static picture). 

- Calculate the length of each axis. 

- Calculate the wavelengths of light waves that are already propagating within each arm within the 

interferometer, 𝜆𝑥−𝑎𝑟𝑚 and 𝜆𝑦−𝑎𝑟𝑚. 

- Calculate the length of each arm in units of its wavelength (i.e. how many optical spatial cycles 

fit into each arm). 

- Show that the difference in spatial optical cycles and phase between the two arms is zero. 

 

b2) A more complete calculation 

The calculations in b1) are not wrong, but they suggests that the gravitational wave does not 

generate a phase difference between light in the two interferometer arms. This conclusion is false, 

because the calculation is not complete. 
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- The laser used to feed the interferometer is based on a cavity with a rigid length. The length of 

the cavity is an integer multiple of half of the laser’s wavelength, i.e. 𝐿𝑙𝑎𝑠𝑒𝑟 𝑐𝑎𝑣𝑖𝑡𝑦 = 𝑛𝜆𝑙𝑎𝑠𝑒𝑟/2, 

where 𝑛 is an integer. Is the wavelength 𝜆𝑙𝑎𝑠𝑒𝑟 of the light just as it emerges from the laser longer, 

shorter, or unchanged during the passage of the gravitational wave (at maximum stretch)? 

- After waiting for light from the laser to travel from the beamsplitter to the mirrors and back (i.e. 

after waiting for the interferometer to be filled with new light), calculate the length of each 

interferometer arm in units of 𝜆𝑙𝑎𝑠𝑒𝑟 (at maximum stretch for the x-arm and maximum compression 

for the y-arm). 

- Calculate the difference in optical cycles between the two arms and show that it corresponds to 

a phase difference of Δ𝜙 = 4𝜋𝐿ℎ+/𝜆𝑙𝑎𝑠𝑒𝑟. 

 


