PHYS 251: Atomic Physics Lab

Due date (in lab): Sept. 4, 2024 (Wednesday section)

Sept. 5, 2024 (Thursday section)

Error Analysis Exercises

Problem #1: Statistical analysis

Ten different students use a 1 m ruler to measure the length of rope that is about 1.5 meters long and get the following values (in cm):

149.5 149.8 150.1 149.8 150.3 149.6 149.9 150.0 150.4 149.7

- a) Calculate the average length of the rope.
- b) Calculate/estimate the precision (i.e. error) of a single measurement.
- c) Calculate the uncertainty on the average of the measurements of the rope length.

Problem #2: Error propagation

A student measures the lengths of the four sides of a rectangle and gets the following results (in cm):

 300.5 ± 0.5 153.2 ± 0.3 299.9 ± 0.5 152.6 ± 0.3

- a) Are the measurements consistent with each other? Explain.
- b) Calculate the average lengths of the long and short sides of the rectangle and the associated errors on those averages.
- c) Calculate the perimeter of the rectangle and the error on it.
- d) Calculate the area of the rectangle and the error on it.
- e) Calculate length of diagonal on rectangle and the error on it.
- f) Calculate the angle in degrees that the diagonal makes with the long side of the rectangle and the error on it.

Problem #3: Unweighted vs weighted average with error bars

Five different students measure π (i.e. 3.1415926...) by various methods and get the following results:

 3.15 ± 0.03 3.12 ± 0.01 3.16 ± 0.2 3.20 ± 0.05 3.14 ± 0.04

- a) What is the average value of these measurements, and what is the error on this average.
- b) A sixth student finds the following value for π with a much larger error bar: 2.7 ± 0.7 Calculate the average of the six measurements and the error on this average.
- c) The sixth value is throwing off the average, even though it has a larger error bar. A more accurate way to calculate the average in this case is to use a weighted average that gives more weight to measurements with smaller error bars:

$$< x>_{weighted} = \frac{\sum (x_i/\sigma_i^2)}{\sum (1/\sigma_i^2)}$$
 with $\sigma_{weighted} = \sqrt{\frac{1}{\sum (1/\sigma_i^2)}}$

Calculate the weighted average of the six measurements of π and the associated error on this weighted average, and then compare with the result from (b).