Op-amp Buffet

MENU:

- Op-amps and complex impedances.
 - → Integrators and active low-pass filters.
 - → **Differentiators** and active high-pass filters.
- Op-amps and power amplifiers.
 - \rightarrow Op-amps with transistor outputs.
- Op-amp constant current sources.
- Op-amps and photodiodes.

Watch out for positive feedback !!!

[OP27 Datasheet Rev. F, Analog Devices (2006)]

When would you use an op-amp integrator or differentiator?

> Do not use an op-amp for a high-pass or low-pass filter.

 \rightarrow R and C components work up to very high frequencies, but op-amps have limited bandwidth.

 \rightarrow exception: RC op-amp circuits can imitate the impedance of a perfect inductor \rightarrow make ideal "RLC" circuits.

➢ RC op-amp circuits are good if you need a true differentiator or integrator, or very high fidelity performance.

 \rightarrow more on this next week.

 \rightarrow A true integrator can measure charge (particle physics).

Integrators and differentiators were the basis of analog computers (outdated).

Op-amps for power amplifiers

Inverting amplifier with a push-pull buffer inside the feedback loop.

If the signal is not too fast (i.e. slower than the slew rate ~ 1 V/ μ s), then the feedback of the op-amp will significantly suppress cross-over distortion (which is due to the 0.6 V diode drop of the base-emitter path).

Constant Current Source with Grounded Load

Photodiodes and Op-amps

Light sensitive area

➢ Each incident photon will produce about 0.5-0.9 photo-electrons.

The photo-current goes in the "wrong" direction.

FDS100 photodiode [Image from www.thorlabs.com]

small electric field (0.6 V)

Reverse-biasing Photodiodes

Why use reverse-biasing?

- It reduces the PN junction capacitance.
- → Faster time response.
- It improves the **linearity** of the photo-current (i.e. photo-electrons per photon) at higher illumination.

Drawback: increased noise at ultra-low intensities.