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I.  Introduction 
Feedback is a mechanism for regulating a physical system so that it maintains a 

certain state. Feedback works by measuring the current state of a physical system, 
determining how far the current state is from the desired state, and then automatically 
applying a control signal to bring the system closer to the desired state. This process is 
repeated iteratively to bring the system to the desired state and keep it there. 

Feedback can be used very effectively to stabilize the state of a system, while also 
improving its performance: Engineers use feedback to control otherwise unstable designs; 
op-amps use feedback to stabilize and linearize their gain; and physicists use feedback to 
stabilize and improve the performance of their instruments. 

 

A.  Feedback in engineering 

Feedback is ubiquitous in engineering. Its application has led to device features and 
machines which would not otherwise function. Here are few examples: 

Climate control: A sensor measures the temperature and humidity in a room and then 
heats or cools and humidifies or dehumidifies accordingly. 

Automobile cruise control: The car measures its speed and then applies the accelerator or 
not depending on whether the speed must be increased or decreased to maintain the target 
speed. 

Highly maneuverable fighter jets: The F-16 Falcon fighter jet is an inherently unstable 
aircraft (i.e. the airframe will not glide on its own). The F-16 does fly because 5 onboard 
computers constantly measure the aircraft’s flight characteristics and then apply 
corrections to the control surfaces (i.e. rudder, flaps, ailerons, etc…) to keep it from 
tumbling out of control. The advantage of this technique is that the aircraft has the very 
rapid response and maneuverability of a naturally unstable airframe, while also being 
able to fly. 

 

B.  Feedback in electronics: 
Op-amps use feedback to achieve very high linearity and predictability for their 

closed-loop gain by sacrificing some of their extremely high open-loop gain. 

Another common application of feedback in electronics is in precision, fast- response 
power supplies. Constant current and constant voltage power supplies which have a high 
degree of stability use feedback to regulate their current or their voltage, by measuring 
the current and voltage across a precision shunt resistors and then using feedback to 
automatically correct for any deviations from the desired output. Feedback also allows 
the power supply to adjust its voltage or current very quickly and controllably in response 
to a change in load. 
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C.  Feedback in physics 
Feedback has become a familiar tool for experimental physicists to improve the 

stability of their instruments. In particular, physicists use feedback for precise control of 
temperature, for stabilizing and cooling particle beams in accelerators, for improving the 
performance of atomic force microscopes, for locking the optical frequency of lasers to 
atomic transitions, and referencing quartz oscillators to ground state atomic hyperfine 
microwave transitions in atomic clocks, to name just a few example. 

Temperature control: Many delicate physics devices, such as crystals, lasers, RF 
oscillators, and amplifiers, require their temperature to be very stable in order to 
guarantee their performance. For example, the wavelength of diode lasers generally has a 
temperature dependence on the order of 0.2 nm/°C, but requires a stability of 10-6 nm for 
experiments. 

Stochastic cooling:  In a particle accelerator, the transverse momentum spread of 
particles must be reduced to a minimum. The reduced momentum spread increases the 
particle density, or beam luminosity, and consequently the probability of collisions with a 
similar counter-propagating particle beam in the detector area. Stochastic cooling works 
by measuring the transverse positions and momenta of the particles as they pass through a 
section of the accelerator, and then applying appropriate momentum kicks to some of the 
particles at other points in the accelerator ring to reduce the overall transverse momentum 
spread. The process is repeated until the momentum spread is sufficiently reduced. The 
1984 Nobel Prize in Physics was awarded in part to Simon van der Meer for his invention 
of stochastic cooling which contributed to the discovery of the W and Z bosons (weak 
force mediators) at CERN. 

Atomic force microscope:  An atomic force microscope uses a very sharp tip (just a few 
nanometers in size at the very tip) which is scanned back and forth just a few nanometers 
above the surface to be imaged. Instead of scanning the tip at a constant height above the 
surface, which could lead to the tip actually running into a bump on the surface, the 
microscope uses feedback to adjust the tip height such that the force (from the surface 
atoms) on the tip is constant. 

Laser locking: Many experiments in atomic and optical physics require lasers which have 
a very stable optical frequency. The optical frequency of the laser is locked by measuring 
the optical frequency difference between the laser and an atomic transition and using 
feedback to set this difference to a constant value. Lasers can be routinely stabilized with 
feedback to better than 1 MHz out of 3x1014 Hz (about 1 part per billion), though 
stabilities close to 1 Hz have been reported after heroic efforts. 

Atomic clocks: In an atomic clock, the frequency of an RF oscillator (a quartz crystal for 
example) is compared to that of a ground state atomic hyperfine microwave transition 
(6.8 or 9.2 GHz). The frequency difference is measured and the frequency of the RF 
oscillator is corrected by feedback. The process is constantly repeated to eliminate any 
drift in the frequency of the RF oscillator. Atomic fountain clocks can achieve accuracies 
in the range of 1 part in 1015, and plans are underway to construct optical atomic clocks 
with accuracies and stabilities of about 1 part in 1018. 
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II. Feedback 
In this section we introduce the main elements of a generic feedback model. 

A. System 

Consider a simple system characterized by a single variable S. Under normal 
conditions the system has a steady state value of S=S0 which may vary and drift 
somewhat over time due to the variation of environmental variables v which we cannot 
measure or are unaware of. We possess a mechanism for measuring the state of the 
system as well as a control input u with which we can use to modify the state S of the 
system. In summary, the system has the following functional form S(u; v; t). We will 
make the final assumption that S is monotonic with u in the vicinity of S0 (i.e. that the 
plot of S vs. u does not have any maxima or minima, and that dS/du is either always 
positive or always negative). 

Figure 11.1 shows a conceptual schematic of the relationship between the system, the 
variables u and v, and the measurement of the system state S. 

 

System

State: S=S0
Measurement of S

Control u
Modifies S

unknowns v
modify S

System

State: S=S0
Measurement of S

Control u
Modifies S

unknowns v
modify S

 
Figure 11.1: Conceptual schematic of system 

 

B.  Objective  
Our objective is to set or lock the state of the system to a desired value S=Sd and keep 

it there without letting it drift or vary over time, regardless of variations in the 
environmental variables v. 

 

C.  Feedback model 
We will set or lock the state of the system to S=Sd with the following procedure (see 

also figure 11.2): 

1.  Measure the state S of the system. 
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2.  Determine how far the system is from its desired set point by defining an error 
variable, e=S-Sd. 

3.  Calculate a trial control value u=u(e). 

4.   Feed the calculated control value, u(e), back into the control input of the system S. 

5.  The state of the system changes in response to the change in the control value. 

6.   Return to step. 

If we repeat this feedback cycle indefinitely with an appropriately calculated 
control value u(e), then the system will converge to the state S=Sd and remain there 
even under the influence of small changes to other variables (i.e. v) which influence 
the value of the state S. 

This feedback model can be adapted to include several state variables and several 
feedback variables. 

 

System

State: S→Sd
Measurement of S

Control u
Modifies S

unknowns v
modify S

Calculate error e=S-Sd

Calculate u=u(e)

System

State: S→Sd
Measurement of S

Control u
Modifies S

unknowns v
modify S

Calculate error e=S-Sd

Calculate u=u(e)
 

Figure 11.2: Conceptual schematic of system with the feedback loop. 

 

In section III, we discuss a frequently used expression for calculating the feedback 
control variable u(e). 

 

III. PID Feedback Control 
The most popular type of feedback stabilization control, u(e), is Proportional-Integral-

Derivative (PID) gain feedback. PID is very effective and easy to implement. The 
expression for u(e) depends only on the error signal e=S-Sd and is given by 

  ∫ ++=
t

DIP te
dt
dgdttegtegteu

0

)()()();(
  (11.1) 
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where gP, gI, and gD are respectively the proportional, integral, and derivative gains. We 
also note that gP, gI, and gD do not have the same units. We will assume for simplicity 
that gP is dimensionless in which case u(e) has the same units as S. 

 

A.  Time evolution of the system with PID feedback control 
We are now in a position to calculate the time evolution of the system under the 

influence of feedback. Without feedback, the system would remain in the state S0:  

  0)( StS feedbackno =       (11.2) 

S0 may vary in time, but we will ignore this effect until part III.C. 

In the presence of feedback, the state of the system at time t+Δt (step 5) depends on 
the state of the system without feedback, S0, which has been modified by the control 
input variable u(e). We now make the following simplifying assumption that the control 
input variable, u(e), “controls” or modifies the state of the system S through the process 
of addition. In this case, the system state variable S evolves according to the following 
equation: 

  );()( 0 teuSttS +=Δ+      (11.3) 

We can convert this equation to an integro-differential equation, if we assume that the 
system has a characteristic reponse time τ (small).  In this case, equation 3 becomes

 ∫ +++=+
t
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dt
dgdttegtegStS

dt
dtS

0
0 )()()()()( τ  (11.4) 

 

B. Special case: pure proportional gain feedback 
As a limiting case we consider pure proportional gain feedback (gI=0 and gD=0). We 

study this special case, because it is the basis for op-amp feedback and is also the 
simplest form of feedback. For gI=0 and gD=0, equation 4 becomes 

 )()()( 0 tegStS
dt
dtS P+=+τ      (11.5) 

We can solve this 1st order differential equation, for the initial condition S(t=0)=S0, with 
the same technique we used in chapter 3 (equations 17-21). After a little bit of integration 
and algebra, which is left as an exercise to the reader, we find the following solution: 
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Equation 11.6 shows that the system will converge to the state S=(S0-gPSd)/(1-gP) 
when feedback control is applied, so long as the exponential exponent is negative (i.e. 
gP<1), otherwise S will diverge. We note that gP<0 corresponds to negative feedback. 

Figure 11.3 shows the response of a system for a dimensionless gain of gP=-10 and 
state values S0=0.5 and Sd=1, with time measured in units of τ (the system characteristic 
response time). 

 

Sd 

S(t)

S0 
S 

Figure 11.3: System response with pure proportional gain feedback control and 
parameters gP=-10, S0=0.5, and Sd=1. Time is measure in units of τ (the system 
characteristic response time). 

 

As figure 11.3 makes clear, the system does not converge to the desired state S=Sd, 
though it does reach its final steady state value relatively quickly. If we restrict ourselves 
to negative feedback, then according to equation 10, the system will converge to the 
steady state value Sss of  
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Equation 11.7 indicates that the system can be made to converge to a steady state value 
Sss which is arbitrarily close to S=Sd just by increasing the gain. In fact, for infinite 
proportional gain (i.e gP→-∞) the system does converge to Sss = Sd: This is the limit in 
which op-amps feedback operates. 

A note of caution: On its own, equation 7 is a little misleading since it would seem to 
imply that large positive feedback, gP→-∞, would also produce Sss = Sd. Of course, this is 
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not true since according to equation 11.6, the system will never achieve a steady state, but 
instead will diverge forever. 

 

C.  Solution for PI feedback control 
A large majority of PID feedback controllers are actually just PI controllers (i.e. 

proportional and integral gain, but no derivative gain), and so for simplicity we solve 
equation 11.4 without the derivative gain term (gD=0). The inclusion of the derivative 
gain term is conceptually simple and follows the same treatment as PI feedback and is 
left as an exercise to reader. Derivative gain is used to improve the time response of the 
feedback, so that the system converges more quickly to its steady state value. 

With the derivative gain term omitted, equation (11.4) becomes 

  ∫++=+
t

IP dttegtegStS
dt
dtS

0
0 )()()()( τ   (11.8) 

We can convert this integro-differential equation to a 2nd order linear differential equation 
with constant coefficients by taking the time derivative of equation (11.8) to obtain 

  dIIP SgSgS
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where we employed the substitution e(t)=S-Sd. After combining similar terms, equation 
(11.9) becomes 
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Equation 11.10 is an inhomogeneous 2nd order differential equation with constant 
coefficients. The full solution to equation (7) is given by 
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The first two terms of equation 11.11 represent the homogeneous solution to equation 
11.10, while the 3rd term is the inhomogeneous solution to the equation (it does not 
depend on the initial condtions). A+ and A- are constants to be determined from the initial 
conditions. 

Equation 11.11 shows that the system will converge to the state S=Sd when 
feedback control is applied, so long as λ+ and λ- are negative (i.e. negative feedback), 
otherwise S will diverge (exactly the opposite of what we want to accomplish with 
feedback). 
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If we choose S(t=0)=S0 and dS(t=0)/dt=0 as our initial conditions, we can calculate 
the constants A+ and A-. After a little bit of algebra, we find that 
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In figure 11.4, the behavior of the system under PI feedback control is plotted for 
several different parameters configurations. 

 

      

Sd Sd 

S(t)S(t) 

Figure 11.4: Time-evolution of a generic system with PI control feedback for S0=0.5 and 
Sd=1. For the left hand plot the gain parameters are gP=-10, gI=-30, while for the right 
hand plot the parameters are gP=-100, gI=-4000. The small overshoot in the left hand plot 
is due to a small imaginary part in the exponential exponent of equation 11.11(a). 

 

The primary purpose of integral gain is to provide essentially infinite gain at DC 
(0 Hz), which guarantees that Sss=Sd, as can be seen in figure 11.4. Figure 11.4 also 
shows that the larger the gain, the faster the correction time of the feedback control 
loop.  
 

D.  Fourier space analysis of noise suppression 

One of the primary objectives of feedback is to make the system insensitive to noise 
on the system state S, so that the system state stays locked to S=Sd regardless of external 
influences. 

In the absence of corrective feedback, external noise will cause the system state to 
deviate from S=S0. External noise at a frequency ω will cause the system state to oscillate 
around its natural steady state such that S=S0+SNcos(ωt), where SN is the amplitude of the 
oscillations. Following the standard Fourier space recipe of chapter 3, we replace cos(ωt) 
with exp(iωt), and then take the real part at the end of our calculations. In essence, we 
must re-solve equations 11.8 with the following modification: 

S0 
S S0 

S
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        (11.13) 
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Using the substitution of equation 11.13, equation 11.10 becomes 
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Equation 11.14 has the same homogeneous solution as equation 11.10, but the 
inhomogeneous solution, Sih(t), differs and is given by the following expression 
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We see that the noise term is present in the inhomogeneous solution, but with an 
additional factor modifying the amplitude of the noise. In the case of negative feedback 
the modulus of this suppression factor, which we will call AN, is always less than unity 
and is given by the following expression 
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The plot in figure 11.5 shows the dependence of the suppression factor, AN, on 
frequency for different feedback schemes. The plot shows that a combination of 
proportional and integral control gives the best suppression of noise, except in the 
vicinity of the “resonant” frequency τω /Ig−= . The high frequency drop-off of the 
suppression factor is not due to feedback but simply the natural response time τ of the 
system which also suppresses noise. 
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Figure 11.5: Comparison of the suppression factor, AN, for different feedback schemes. 
The feedback control loop parameters are gP=-100 and gI=-4000. 
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IV.  Reality 
In practice, feedback is not quite as straightforward as presented in the previous 

section.  

A. Gain vs, Frequency 
In the theoretical treatment of part III, we assumed that the proportional gain was 

independent of frequency. In practice, gain will generally fall off at higher frequencies 
due to natural low-pass RC filtering in an amplifier and the larger circuit. 

As an example, figure 11.6 shows a plot of the open-loop gain of an op-amp as 
function of frequency, which has a clear drop-off in gain at higher frequencies. 

 

 
Figure 11.6: Open-loop gain of the OP27 op-amp (Analog Devices OP27 datasheet 
revision F, p. 10 (2006)). 

 

B.  Phase shifts and positive feedback 
The natural or stray RC filtering of an amplifier not only rolls off the gain at high 

frequencies, but also introduces a -π/2 phase shift. If the feedback loop has a second stray 
unintentional RC filter present (for example, the natural time response of the system), 
then a second -π/2 phase shift is introduced. If the feedback gain is larger than 1 at the 
frequency at which the total accumulated phase is -π, then the feedback loop goes into 
positive feedback which causes the state of the system to diverge or sometimes oscillate 
out of control. 
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C. Stray RC positive feedback compensation 
One way to avoid having the system go into positive feedback is to purposely 

introduce an additional RC low-pass filter into the feedback loop. If this RC filter has a 
f3dB frequency which is sufficiently smaller than the frequency at which the positive 
feedback occurs then the attenuation of the filter can bring the gain below 1 when the -π 
phase shift occurs. This way the feedback loop will no longer go into positive feedback 
above a certain frequency (of course there will not be any noise suppression or feedback 
action above this frequency either). 

 

 

Design Exercises: 
Design exercise 11-1: Consider an LED facing a photodiode in a manner similar to what 
you did last week in lab 10. Design a circuit which will maintain a constant optical power 
incident on the photodiode, even in the presence of external fluctuations in the room 
lighting. You should use the op-amp circuit of figure 10.10 and use PI feedback control 
to stabilize the intensity of the LED. Your circuit should be able to provide at least 10 
mA at ~2 V to the LED. 

 

Design exercise 11-2: The non-inverting op-amp amplifier with finite open-loop gain. 

In this exercise you will NOT use the op-amp golden rules to solve the problem, 
unless explicitly indicated. 
Consider the non-inverting op-amp amplifier in the circuit below. 
 

R2

+

–

R1

VIN
VOUT

 
In the following parts, V+ and V- refer respectively to the voltages at the non-inverting 
and inverting terminals of the op-amp. The open-loop gain of the op-amp is A. 

a.  Write down the fundamental op-amp relation between V+, V-, Vout, and A when no 
feedback is present (i.e. when R1 and R2 are not present). 

b.  Assuming that the V- input draws no current, derive an expression for V- in terms 
of Vout, R1, and R2. 
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c.  Obtain an expression for Vout in terms of Vin, A, R1, and R2, and determine the 
gain G of the amplifier. Calculate Vout in the limit of A → +∞. Calculate Vout in the limit 
A → -∞ and comment on its physical meaning. 

d.  Suppose that the open-loop gain, A, is not very constant with frequency and 
changes by ΔA between frequencies f1 and f2. Derive an expression for the resulting 
relative variation in the amplifier gain ΔG/G in terms of the relative variation in the open-
loop gain ΔA/A. Calculate ΔG/G and ΔA/A for A=106, ΔA=105,  R2=100 kΩ, and R1=10 
kΩ. 

e.  Most op-amps feature a significant drop-off in their open-loop gain at frequencies 
above ~10 Hz. The drop-off follows a well established curve given by Af=constant, 
where the constant is called the gain-bandwidth product (f is frequency in Hz). The gain-
bandwidth product of the OP-27 is 8 MHz. On a same log-log graph, plot the open-loop 
gain A vs frequency and the closed loop gain G vs. frequency (for R2=100 kΩ and R1=10 
kΩ) for an OP-27-based non-inverting amplifier. 
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Lab 11: PI feedback control 
 

This week’s lab focuses on the use of PI feedback control to stabilize the incident 
light on a photodiode. We also introduce the Peltier thermoelectric cooler which is 
frequently used for precision temperature control in electronic circuits. 
 
 
1.  PI feedback control of an LED (2.5 hours … infinite if you are not prepared) 

Construct the circuit we used in Lab 10, part 4b. Use your circuit design from design 
exercise 11-1 to regulate the optical power incident on the photodiode. The circuit should 
be such that the incident optical power can be set with some control resistor. 

a.  Determine experimentally the integral and proportional gain that you need in 
order for the feedback to function properly. 

b.  Use a second LED attached to a square-wave generator to see how fast your 
circuit can respond and modify the intensity of its LED to keep incident optical power 
on the photodiode constant. Adjust the integral and proportional gain to optimize the 
response time of your feedback circuit. What is the fastest response time that you can 
obtain with your circuit? How does the feedback control respond to a step function 
change in incident optical power from an external source (an oscilloscope plot will 
suffice)? 

c.  If you increase the proportional gain sufficiently, the feedback loop will go 
into positive feedback and start to oscillate uncontrollably. What is the frequency of 
this oscillation? 

 
Recommendations:  
1.  Choose the desired light level: measure the output of the photodiode plus op-amp 
detector circuit (with LED on at about desired level), and set Vctrl (i.e. Sd) to about this 
voltage value. 
2.  Integrator starting values: R = 1 kΩ, C = 100 nF, Rfeedback = 10 MΩ. 
3.  Proportional gain range: 0 < gp < 10 (adjustable with a potentiometer). 
4.  Procedure: Start off with only integral gain (zero out or remove proportional gain), 
and then once you get negative feedback, you can slowly add in the proportional gain to 
optimize the response. 
 
 
2.  Peltier thermoelectric cooler (0.25 hours) 

A Peltier thermoelectric cooler (TEC) is a two-wire device which consists of two 
ceramic plates separated by a bi-metal junction. The TEC will cool one plate by 
removing heat and dumping it into the other plate (and thus heating it). Verify that if the 
current is reversed, then the cooling plate becomes the heating plate and vice versa. 
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