Summary of Covered Topics

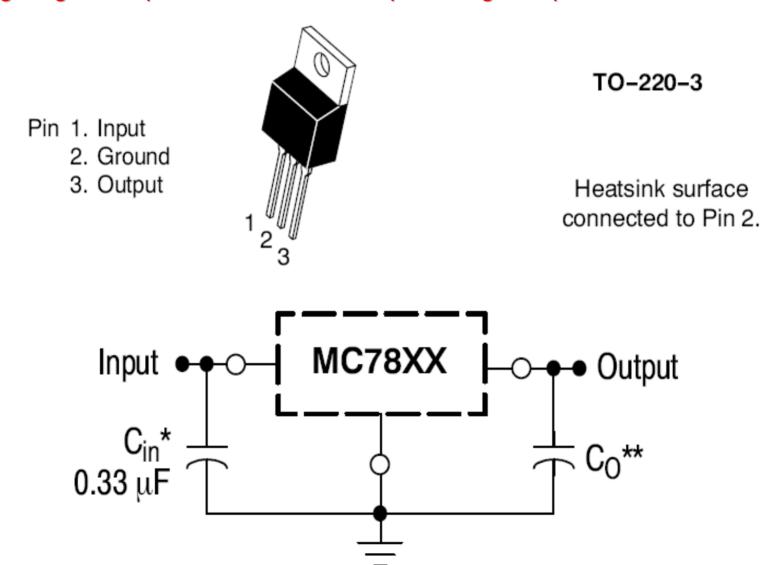
Important concepts:

- Impedance
- > Amplification
- Frequency/Fourier Analysis
- Feedback

Important electronics components and equipment:

- Resistors, capacitors, inductors.
- > Special components: tranformers, photodiodes, thermistors, and Peltier coolers.
- Diodes, BJTs, and FETs.
- Op-amps and comparators.
- Multimeters, oscilloscopes, and function generators.
- Breadboards, prototyping boards, and soldering irons.
- Circuit simulation and layout software.

Final Exam


- Wednesday, May 13, 2009: Small Hall 238, 2pm-5pm.
- > 3 hours long.
- It will cover all the topics covered in the class and lab.
- You can expect some variations on the quiz and design exercise materials.
- Some questions will be on pratical lab knowledge.
- > Some problems will involve combining knowledge from different chapters.

Physics 351: Electronics II What to expect?

- Mostly **DIGITAL** electronics
 - → Logic gates.
 - → Operations.
 - → ADCs, DACs, and opto-couplers.
 - → Counters, registers, and digital memory.
- > A fair bit on **FPGA**s
 - → C-like programming.
 - → Complex digital circuits.
- A little bit on microprocessors
 - → C programming.
- > **Digital Signal Processing (DSP)** ... or how to make an analog circuit with digital concepts.

Voltage Regulators (I)

Voltage regulators produce a constant output voltage despite variations in the input.

Voltage Regulators (II)

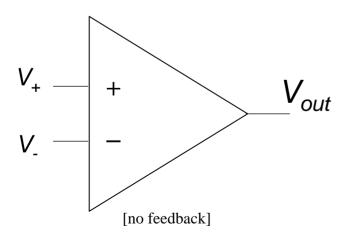
MC7800, MC7800A, MC7800AE, NCV7800

ELECTRICAL CHARACTERISTICS (Vin = 10 V, IO = 500 mA, TJ = Tlow to 125°C (Note 1), unless otherwise noted)

		MC7805B, NCV7805			MC7805C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	V _O	4.8	5.0	5.2	4.8	5.0	5.2	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W) 7.0 Vdc \leq Vi _n \leq 20 Vdc 8.0 Vdc \leq Vi _n \leq 20 Vdc	Vo	- 4.75	- 5.0	- 5.25	4.75 -	5.0	5.25	Vdc
Line Regulation (Note 4) 7.5 $Vdc \le V_{in} \le 20 \ Vdc$, 1.0 A 8.0 $Vdc \le V_{in} \le 12 \ Vdc$	Reg _{line}	-	5.0 1.3	100 50	-	0.5 0.8	20 10	mV
Load Regulation (Note 4) 5.0 mA \leq I _O \leq 1.0 A 5.0 mA \leq I _O \leq 1.5 A (T _A = 25°C)	Reg _{load}	-	1.3 0.15	100 50	-	1.3 1.3	25 25	mV
Quiescent Current	IB	-	3.2	8.0	-	3.2	6.5	mA
Quiescent Current Change $7.0 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}$ $5.0 \text{ mA} \le I_O \le 1.0 \text{ A } (T_A = 25^{\circ}\text{C})$	Δl _B	-	-	0.5	-	0.3 0.08	1.0 0.8	mA
Ripple Rejection 8.0 $Vdc \le V_{in} \le 18 Vdc$, $f = 120 Hz$	RR	-	68	-	62	83	-	dB
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _I - V _O	-	2.0	-	-	2.0	-	Vdc
Output Noise Voltage (T _A = 25°C) 10 Hz ≤ f ≤ 100 kHz	Vn	-	10	-	-	10	-	μV/V _O
Output Resistance f = 1.0 kHz	ro	-	0.9	-	-	0.9	-	mΩ
Short Circuit Current Limit (T _A = 25°C) V _{in} = 35 Vdc	Isc	-	0.2	-	-	0.6	-	А
Peak Output Current (T _J = 25°C)	I _{max}	-	2.2	-	-	2.2	-	Α
Average Temperature Coefficient of Output Voltage	TCVO	-	-0.3	-	-	-0.3	-	mV/℃

T_{low} = 0°C for MC78XXC, MC78XXAC.

^{= -40°}C for NCV78XX, MC78XXB, MC78XXAB, and MC78XXAEB

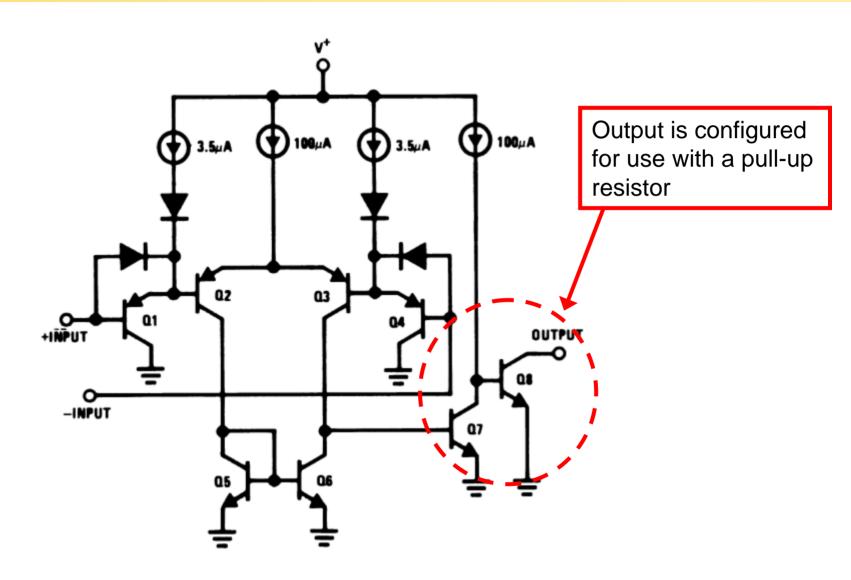

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Comparators

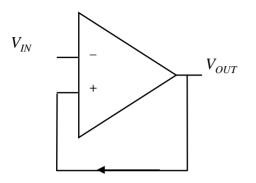
Comparators are specialty op-amps designed to be used with positive feedback or no feedback.

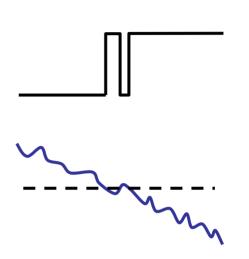
Comparators are two-state devices which output either a high signal or a low signal depending on whether an input voltage is above or below a reference voltage.

A comparator is like an IF statement in computer programming.


Op-amp equation:
$$V_{out} = Gain \times (V_+ - V_-)$$

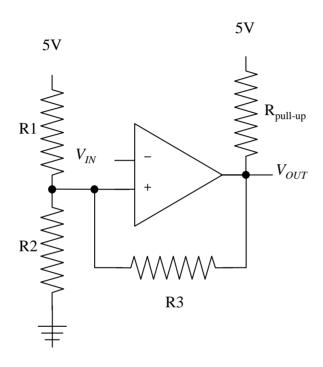
Since $Gain \sim 10^5 - 10^6$,


If
$$V_{\scriptscriptstyle +} > V_{\scriptscriptstyle -}$$
, then $V_{out} = + \; V_{supply} \;$ (HIGH)

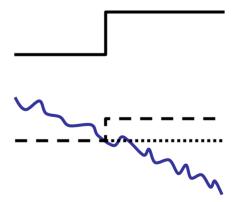

If
$$V_{\scriptscriptstyle +} < V_{\scriptscriptstyle -}$$
, then $V_{out} =$ - V_{supply} (LOW)

The LM2903 comparator

Positive Feedback



Noisy signal leads to "false" triggering


The merits of positive feedback:

- Speed-up the choice of HIGH output or LOW output.
- Introduce hysteresis into comparator behavior
 (i.e. circuit output depends not just on the input, but on its history).

Schmitt Trigger

Hysteresis suppresses "false" triggering due to noise.

