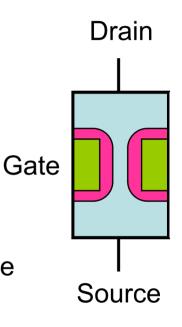

Transistors III: FETs

- 3-terminal device like a BJT
- New names for the connections
 - Drain (input) ...sort of like collector
 - Source (output) ... sort of like emitter
 - Gate (controls flow) ... sort of like base
- 2 broad types
 - Junction FETs (JFETs)
 - Metal-oxide-semiconductor (MOSFETs)

Source


Principle of Operation

Made from a conducting piece of silicon

- This is called the *channel*
- Drain on one end
- Source on the other
- In the middle a gate is embedded
- Current regulation
 - If the gate is at a negative voltage there is a charge depletion zone around the gate
 - Current cannot flow in this zone
 - Expands as the gate becomes more negative
 - Controls the conductivity of the channel

> At a **pinch off voltage** the current stops (V_p)

- Think of pinching a hose to cut off the flow of water

JFETs vs. MOSFETs

> JFET gate forms a diode junction with the channel. Input impedance ~ $10^{12} \Omega$.

> MOSFET has a insulating layer for better input impedance (up to $10^{14}\Omega$).

MOSFETs have an extra terminal called the body.

 \rightarrow Usually just connected to the source to remove charge.

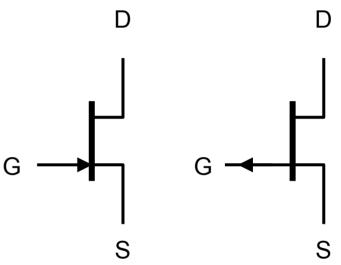
➢ MOSFETs are generally used for power circuits and digital circuits.

Many other types now available.

FETs vs. BJTs

FET Pros

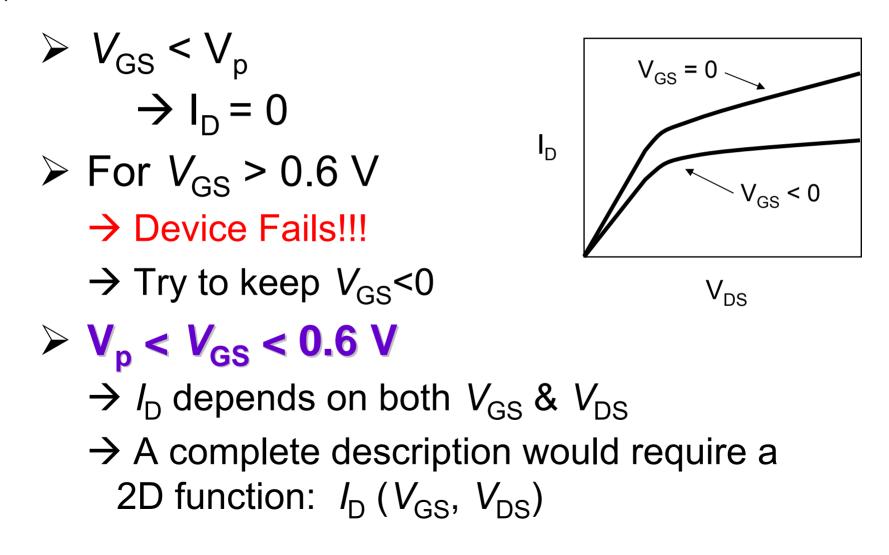
- ➤ The gate of a FET draws almost no current (i.e. pA range).
- ➢ FETs have almost infinite input impedance.
- ➤ Can frequently make a better amplifier circuit with a FET.
- Can operate bi-directionally sometimes.



- FETs are more complicated than BJTs
 - \rightarrow complicated operational model.
- ➢ FET have even larger parameter spreads than BJTs.

FET properties

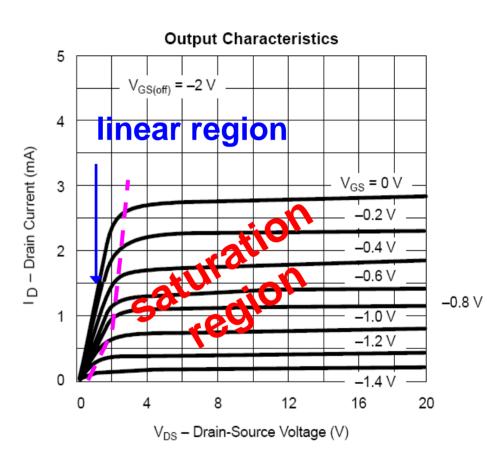
Can be a n-channel or a p-channel


- N-channel like npn
- P-channel like pnp
- Gate may be centered on some diagrams
 - Have to figure out it which is which from "context"
 - Source & Drain are nearly identical
 - Can be used backwards with almost same performance
- N-channel usually faster than Pchannel due to higher mobility of electrons vs holes moving in the channel.

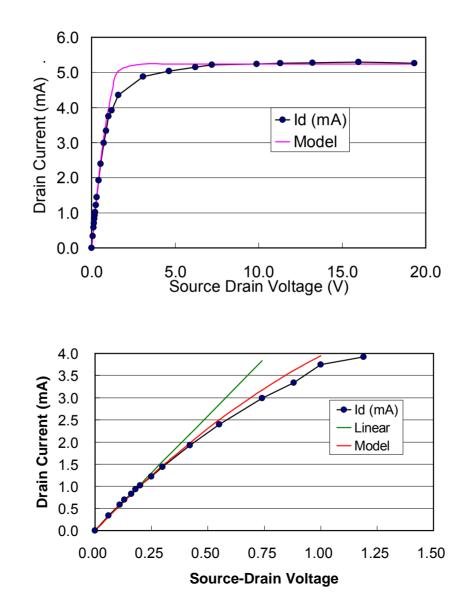
n-channel JFET (left) p-channel JFET (right)

Gate Voltage Rules

 V_p = pinch-off voltage: this is an intrinsic parameter of the JFET.



Linear and Saturation Regions

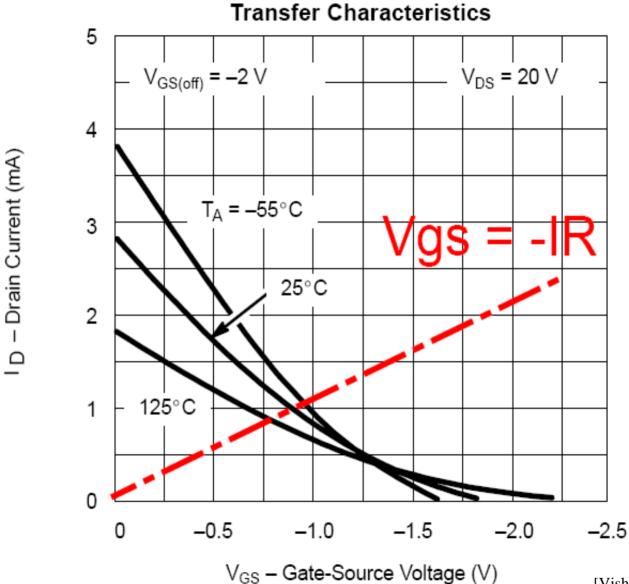

Linear Region :
$$V_{DS} < V_{GS} - V_P$$

 $\rightarrow I_D = k [2(V_{GS} - V_P)V_{DS} - V_{DS}^2]$

Saturation Region : $V_{DS} > V_{GS} - V_P$ $\rightarrow I_D = k (V_{GS} - V_P)^2$

- V_p is the pinch-off voltage
 → It's negative for n-channel.
 > Voltage where conductance stops
 - Huge manufacturing spread
- ➢ k is a constant
 - Depends on the physical size of the channel (length/width)
 - Depends on the manufacturing details

Ideal Performance vs. Reality

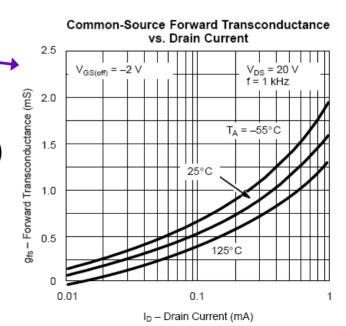

2N3958

VISHAY

Vishay Siliconix

Vishay Siliconix		/ V _P					
SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
				Limits			
Parameter	Symbol	Test Conditions	Min	Typ ^a	Max	Unit	
Static					-	-	
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = -1 μA, V _{DS} = 0 V	-50	-57		v	
Gate-Source Cutoff Voltage	V _{GS(off)} 🖌	V _{DS} = 20 V, I _D = 1 nA	<mark>-1.0</mark>	-2	<mark>-4.5</mark>		
Saturation Drain Current ^b	(I _{DSS})	V _{DS} = 20 V, V _{GS} = 0 V	0.5	3	5	mA	
Gate Reverse Current	I _{GSS}	V _{GS} = -30 V, V _{DS} = 0 V		-10	-100	pА	
		T _A = 150° C		-20	-500	nA	
Gate Operating Current	I _G	V _{DG} = 20 V, I _D = 200 μA		-5	-50	pА	
		T _A =125° C		-0.8	-250	nA	
Gate-Source Voltage	V _{GS}	V _{DG} = 20 V, I _D = 200 μA	-0.5	-1.5	-4	v	
		I _D = 50 μA			-4.2		
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 1 mA, V _{DS} = 0 V			2		
Dynamic							
Common-Source Forward Transconductance	(g _{fs})	V _{DS} = 20 V, V _{GS} = 0 V f = 1 kHz	1	2.5	3	mS	
Common-Source Output Conductance	g _{os}			2	35	μS	

Solving for the current graphically


[[]Vishay 2N3958 datasheet]

Transconductance in the Saturation Region

- > There is a quiescent current given by I_D .
- Use lower case symbols to represent small changes around the quiescent values
 - > Transconductance: $g_m = i_d / v_{qs}$

→ Just the slope of I_D vs V_{GS} in the saturated region.

- \rightarrow Depends on $I_{\rm D}$.
- > Smaller variation for $V_{GS} < 0$ V.
- > Units: Ω⁻¹=mho (pronounced "Moe")
 → µmho or umho for 10⁻⁶ mho.
 - \rightarrow mmho for 10₋₃ mho.
 - \rightarrow Sometimes see \mho

