

Feedback Control Theory

Outline

- Motivation: Why study feedback theory?
- System Model, Feedback Model
- PID feedback control theory
- How well does it work?
- Back to Fourier space.
- \succ PID with electronics.

Why is feedback important?

Answer: Feedback is used in most devices to achieve very high levels of stability to external influences.

Why is feedback important?

Answer: Feedback is used in most devices to achieve very high levels of stability to external influences.

The idea of using feedback to regulate a systems behavior has been around for a long time (for example, centrifugal governor, circa 1780's)

The quantitative use of **feedback** is one of the primary engineering developments of the 20th century.

Why is feedback important?

Answer: Feedback is used in most devices to achieve very high levels of stability to external influences.

The idea of using feedback to regulate a systems behavior has been around for a long time (for example, centrifugal governor, circa 1780's)

The quantitative use of **feedback** is one of the primary engineering developments of the 20th century.

Harold S. Black invented negative feedback to stabilize and linearize the gain of telephone amplifiers (at Bell Telephone Laboratories).

"Our patent application was treated in the same manner as one for a perpetual-motion machine"

A little history ...

The original notes by Harold Black which he used to discover the use of feedback for stabilizing amplifiers, while the riding the Manhattan – Staten Island Ferry (1927).

[image from www.wpi.edu]

Feedback Applications

Engineering:

[image from www.yorku.ca]

F-16 Falcon [image from www.nellis.af.mil]

Feedback Applications

Engineering:

[image from www.yorku.ca]

F-16 Falcon [image from www.nellis.af.mil]

Electronics:

Feedback Applications

Engineering:

[image from www.yorku.ca]

F-16 Falcon [image from www.nellis.af.mil]

Biology: anything alive.

Feedback Model

Feedback Model

Claim: system will converge to system state S_d , if u(e) is chosen appropriately.

Feedback Algorithm

Feedback Algorithm: Time Evolution

Feedback Algorithm: Time Evolution

Feedback Algorithm: Time Evolution

Basic time evolution equation:

$$s(t) + \tau \frac{d s(t)}{dt} = s_0 + u(s(t) - s_d)$$

error signal e

Question: What is the best feedback control function u(e) to use ?

How do we find it?

PID feedback control -- how to calculate u(e) --

Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and paper industries, 97% of regulatory controllers utilize PID feedback.

> L. Desborough and R. Miller, Honeywell. Sixth International Conference on Chemical Process Control. *AIChE Symposium Series Number 326* (Volume 98), 2002.

Proportional gain: corrects for errors based on the *Present*.

Integral gain: corrects for errors based on the Past.

Derivative gain: corrects for errors based on the anticipated Future.

PID feedback formula

In PID control feedback, we determine u(e) with the following formula:

$$u(e;t) = g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d e(t)}{dt}$$

PID feedback formula

$$u(e;t) = g_p e(t) + g_i \int_0^t e(t')dt' + g_d \frac{d e(t)}{dt}$$

+

feeback evolution eq.

$$s(t) + \tau \frac{d s(t)}{dt} = s_0 + u(s(t) - s_d)$$

$$\begin{array}{l} \text{PID feedback formula} \\ \hline u(e;t) = g_p e(t) + g_i \int_0^t e(t') dt' + g_d \, \frac{d \, e(t)}{dt} \\ \text{feeback evolution eq.} \\ s(t) + \tau \frac{d \, s(t)}{dt} = s_0 + u(s(t) - s_d) \end{array}$$

$$s(t) + \tau \frac{d \, s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \, e(t)}{dt}$$

$$PID \text{ feedback formula}$$

$$u(e;t) = g_p e(t) + g_i \int_0^t e(t')dt' + g_d \frac{d e(t)}{dt}$$
feeback evolution eq.
$$s(t) + \tau \frac{d s(t)}{dt} = s_0 + u(s(t) - s_d)$$

$$s(t) + \tau \frac{d \ s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \ e(t)}{dt}$$

initial conditions: $s(t = 0) = s_0$
 $\frac{ds}{dt} = 0$ at $t = 0$
We apply feedback
starting at time $t=0$.

starting at time t=0.

Outline

- How well does it work?
- Back to Fourier space.
- \succ PID with electronics.

PID Feedback Pure <u>Proportional</u> Gain

$$s(t) + \tau \frac{d \, s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \, e(t)}{dt}$$

PID Feedback Pure <u>Proportional</u> Gain

 $s(t) + \tau \frac{d \, s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \, e(t)}{dt}$

For pure proportional gain:

$$s(t) + \tau \frac{d s(t)}{dt} = s_0 + g_p e(t)$$

PID Feedback
Pure Proportional Gain: SOLUTION

$$s(t) + \tau \frac{d s(t)}{dt} = s_0 + g_p e(t)$$
Solution: $s(t) = \left[s_0 - \frac{s_0 - g_p s_d}{1 - g_p}\right] e^{-\frac{(1 - g_p)}{\tau}t} + \frac{s_0 - g_p s_d}{1 - g_p}$

PID Feedback
Pure Proportional Gain: SOLUTION

$$s(t) + \tau \frac{d s(t)}{dt} = s_0 + g_p e(t)$$
Solution: $s(t) = \left[s_0 - \frac{s_0 - g_p s_d}{1 - g_p}\right] e^{-\frac{(1 - g_p)}{\tau}t} + \frac{s_0 - g_p s_d}{1 - g_p}$

steady state solution

PID Feedback
Pure Proportional Gain: SOLUTION

$$s(t) + \tau \frac{d \ s(t)}{dt} = s_0 + g_p e(t)$$
Solution: $s(t) = \left[s_0 - \frac{s_0 - g_p s_d}{1 - g_p}\right] e^{-\frac{(1 - g_p)}{\tau}t} + \frac{s_0 - g_p s_d}{1 - g_p}$
new time
response
 $\tau_{new} = \frac{\tau}{1 - g_p}$
steady state solution

PID Feedback
Pure Proportional Gain: SOLUTION

$$s(t) + \tau \frac{d \ s(t)}{dt} = s_0 + g_p e(t)$$
Solution: $s(t) = \left[s_0 - \frac{s_0 - g_p s_d}{1 - g_p}\right] e^{-\frac{(1 - g_p)}{\tau}t} + \frac{s_0 - g_p s_d}{1 - g_p}$
new time
response
 $\tau_{new} = \frac{\tau}{1 - g_p}$
steady state solution

If $g_p > 1 \Rightarrow \frac{\tau}{1-g_p} < 0 \Rightarrow$ positive feedback ... exponential & system diverge.

PID Feedback
Pure Proportional Gain: SOLUTION

$$s(t) + \tau \frac{d s(t)}{dt} = s_0 + g_p e(t)$$
Solution: $s(t) = \left[s_0 - \frac{s_0 - g_p s_d}{1 - g_p}\right] e^{-\frac{(1 - g_p)}{\tau}t} + \frac{s_0 - g_p s_d}{1 - g_p}$
New time
response
 $\tau_{new} = \frac{\tau}{1 - g_p}$
steady state solution

If $g_p > 1 \Rightarrow \frac{\tau}{1-g_p} < 0 \Rightarrow$ positive feedback ... exponential & system diverge.

If $g_p < 1 \Rightarrow \frac{\tau}{1-g_p} > 0 \Rightarrow$ negative feedback ... exponential dies out.

PID Feedback
Pure Proportional Gain: SOLUTION

$$s(t) + \tau \frac{d s(t)}{dt} = s_0 + g_p e(t)$$
Solution: $s(t) = \left[s_0 - \frac{s_0 - g_p s_d}{1 - g_p}\right] e^{-\frac{(1 - g_p)}{\tau}t} + \frac{s_0 - g_p s_d}{1 - g_p}$
new time
response
 $\tau_{new} = \frac{\tau}{1 - g_p}$
steady state solution

If $g_p > 1 \Rightarrow \frac{\tau}{1-g_p} < 0 \Rightarrow$ positive feedback ... exponential & system diverge.

If $g_p < 1 \Rightarrow \frac{\tau}{1-g_p} > 0 \Rightarrow$ negative feedback ... exponential dies out. $g_p < 0 \Rightarrow$ True negative feedback.

Proportional Gain:

Proportional Gain:

Pure Proportional Gain Conclusions

Steady state value:

$$S_{steady \, state} = \frac{S_0 - g_p S_d}{1 - g_p}$$

Time response of system: (due to feedback)

$$\tau_{new} = \frac{\tau}{1 - g_p}$$

Main Conclusions

- > S does not converge exactly to $S_{desired}$ (there's an offset).
- > For g_p → very negative, we have: System converges quicker to steady state.
 - System converges closer to S_{desired}.

Master equation:

$$s(t) + \tau \frac{d \, s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \, e(t)}{dt}$$

Master equation:

$$s(t) + \tau \frac{d \, s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \, e(t)}{dt}$$

Master equation:

$$s(t) + \tau \frac{d \, s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \, e(t)}{dt}$$

Differential-integral equations are generally hard to solve !

Master equation:

$$s(t) + \tau \frac{d \ s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \ e(t)}{dt}$$

$$\frac{d}{dt}$$
Differential-integral equations are generally hard to solve !
... but here if we differentiate by time t, then it gets "easier".

Master equation:

$$s(t) + \tau \frac{d \ s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \ e(t)}{dt}$$

$$\frac{d}{dt}$$

Differential-integral equations are generally hard to solve !

... but here if we differentiate by time t, then it gets "easier".

$$\frac{ds}{dt} + \tau \frac{d^2s}{dt^2} = g_p \frac{ds}{dt} + g_i(s - s_d)$$

Master equation:

$$s(t) + \tau \frac{d \ s(t)}{dt} = s_0 + g_p e(t) + g_i \int_0^t e(t') dt' + g_d \frac{d \ e(t)}{dt}$$

$$\frac{d}{dt}$$
Differential-integral equations are generally hard to solve !

$$\tau_{egroup}^{terms} = \frac{ds}{dt} + \tau \frac{d^2s}{dt^2} = g_p \frac{ds}{dt} + g_i(s - s_d)$$

$$\tau \frac{d^2s}{dt^2} + (1 - g_p) \frac{ds}{dt} - g_i s = -g_i s_d$$

PID Feedback Proportional-Integral Gain: SOLUTION

Master equation:

$$\tau \frac{d^2 s}{dt^2} + \left(1 - g_p\right) \frac{ds}{dt} - g_i s = -g_i s_d$$

initial conditions: $s = s_0$ (at t = 0) $\frac{ds}{dt} = 0$

PID Feedback <u>Proportional-Integral</u> Gain: SOLUTION

Master equation:

$$\tau \frac{d^2 s}{dt^2} + \left(1 - g_p\right) \frac{ds}{dt} - g_i s = -g_i s_d$$

2nd order diff. eq. with constant coefficients (inhomogenous) Standard Solution ! initial conditions: $s = s_0$ (at t = 0) $\frac{ds}{dt} = 0$

PID Feedback <u>Proportional-Integral</u> Gain: SOLUTION

Master equation:

$$\tau \frac{d^2 s}{dt^2} + \left(1 - g_p\right) \frac{ds}{dt} - g_i s = -g_i s_d$$

2nd order diff. eq. with constant coefficients (inhomogenous) Standard Solution ! $s(t) = A_+ e^{\lambda_+ t} + A_- e^{\lambda_- t} + s_d$ initial conditions: $s = s_0$ (at t = 0) $\frac{ds}{dt} = 0$

PID Feedback Proportional-Integral Gain: SOLUTION

Master equation:

$$\tau \frac{d^2 s}{dt^2} + \left(1 - g_p\right) \frac{ds}{dt} - g_i s = -g_i s_d$$

2nd order diff. eq. with constant coefficients (inhomogenous) Standard Solution ! $s(t) = A_{+}e^{\lambda_{+}t} + A_{-}e^{\lambda_{-}t} + s_{d}$ with $\lambda_{\pm} = \frac{-(1-g_{p}) \pm \sqrt{(1-g_{p})^{2}+4\tau g_{i}}}{2\tau}$

PID Feedback Proportional-Integral Gain: SOLUTION

Master equation:

$$\tau \frac{d^2 s}{dt^2} + \left(1 - g_p\right) \frac{ds}{dt} - g_i s = -g_i s_d$$

Proportional – Integral Gain:

 g_p =-100, g_i =-20,000, τ =1

Proportional-Integral Feedback CONCLUSIONS

$$s(t) = A_+ e^{\lambda_+ t} + A_- e^{\lambda_- t} + s_d$$

with
$$\lambda_{\pm} = \frac{-(1-g_p) \pm \sqrt{(1-g_p)^2 + 4\tau g_i}}{2\tau}$$
 and $A_{\pm} = \mp \left(\frac{\lambda_{\mp}}{\lambda_- + \lambda_+}\right)(s_d - s_0)$

$$\succ$$
 s(t) converges to s_d → very good !

- > $\lambda_+ < 0$ and $\lambda_- < 0$ for the system to converge.
- > If λ_{\pm} has an <u>imaginary</u> part, then the system will have damped <u>oscillations</u>.
- > We want λ_+ and λ_- to be as negative as possible, i.e. $g_p \ll 0$, $g_i \ll 0$.

Idea: Noise can cause the system to "blow up", i.e. oscillate wildly, if the system is <u>unstable at some frequency</u>.

Add in a noise term: $s_0 \rightarrow s_0 + s_n e^{i\omega t}$

Idea: Noise can cause the system to "blow up", i.e. oscillate wildly, if the system is <u>unstable at some frequency</u>.

Add in a noise term:
$$s_0 \rightarrow s_0 + s_n e^{i\omega t}$$

The solution now becomes: $s(t) = A_+e^{\lambda_+t} + A_-e^{\lambda_-t} + s_d + Bs_ne^{i\omega t}$

Add in a noise term:
$$s_0 \rightarrow s_0 + s_n e^{i\omega t}$$

The solution now becomes: $s(t) = A_+ e^{\lambda_+ t} + A_- e^{\lambda_- t} + s_d + Bs_n e^{i\omega t}$
original PI feedback solution noise
contribution

Add in a noise term:
$$s_0 \rightarrow s_0 + s_n e^{i\omega t}$$

The solution now becomes: $s(t) = A_+ e^{\lambda_+ t} + A_- e^{\lambda_- t} + s_d + Bs_n e^{i\omega t}$
original PI feedback solution noise contribution

with
$$B = \frac{i\omega}{i\omega(1-g_p)-\tau\omega^2-g_i}$$

Add in a noise term:
$$s_0 \rightarrow s_0 + s_n e^{i\omega t}$$

The solution now becomes: $s(t) = A_+ e^{\lambda_+ t} + A_- e^{\lambda_- t} + s_d + Bs_n e^{i\omega t}$
original PI feedback solution noise
contribution
with $B = \frac{i\omega}{i\omega(1-g_p)-\tau\omega^2-g_i}$
Noise Suppression Factor: $A_{NS} = |B| = \frac{\omega}{(\tau\omega^2+g_i)^2+(1-g_p)^2\omega^2}$

Proportional – Integral Gain:

 g_{p} =-100, g_{l} =-4000, τ =1

ω, frequency (rads/τ)

Proportional – Integral Gain:

 $g_p = -100, g_l = -10,000, \tau = 1$

Reality: Gain is not flat

[From the OP27 datasheet] (good quality op-amp)

