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Chapter 1: Digital logic 
 
I.  Overview 
 In PHYS 252, you learned the essentials of circuit analysis, including the concepts 
of impedance, amplification, feedback and frequency analysis. Most of the circuits we 
used were linear circuits, where the output of a circuit component was proportional to the 
input. For example, a good amplifier might make an input voltage level larger but it 
should not change the shape of the signal. The best amplifiers (which we did not attempt 
to build) only amplify the input signal and do not add any noise or distortion to the signal. 
They also have a large dynamic range, which means that they can amplify small signals 
or large signals while maintaining a linear proportionality between the output and the 
input. This is difficult and requires careful attention to the circuit layout. In most cases 
researchers will simply buy well-engineered commercial amplifiers rather than build their 
own. 

 Digital circuits are at the other end of the spectrum from linear circuits. A digital 
output has only two possible values.  Rather than denoting these two output voltages by 
their actual values (e.g. 0V or 5V), the output voltages, or states, are denoted by a number 
of conventions: 

• High or low 

• H or L 

• True or False 

• T or F 

• 0 or 1 

Digital circuits are far less sensitive to the circuit components and the component layout 
than analog designs. They primarily depend on logic, rather than currents or voltages for 
operation and so one can quickly learn to build rather sophisticated digital circuits. 
However, the increasing speed of microprocessors has also made digital circuit design 
less necessary. In this course we will survey some of the most important concepts in 
digital circuit design: logic gates, timing, A/D and D/A converters, memory, bus design 
and digital signal processing. As the course progresses, we will move from building 
simple digital circuits to using computer programming to create sophisticated and flexible 
interfaces between the digital and analog world. 
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II.  Digital Logic and Boolean Algebra 

Variables 
Some variables have only a single binary digit, and therefore can take only two possible 
values, TRUE (1) or FALSE (0). We will call these logical (or Boolean) variables.  

This type of variable is extremely useful for controlling equipment and computer 
programs. For example, if you want a variable that represents whether a piece of 
equipment is turned on (1) or turned off (0), you might assign a logical variable to it. 
Similarly, if a shutter is open (1) or closed (0), you might want to assign a logical 
variable to it. Now, you could use Boolean algebra to make sure that you only try to take 
data when your equipment was turned on and your shutter was open.  

Operators 
Since there are only two possible states for a logical variable, there are only two possible 
logical unary (single operand) operators. The identity operator does not change the 
logical value, so 

0 input →0 output 

1 input →1 output. 

The inverter reverses the logical input, so 

0 input →1 output 

1 input →0 output. 

This second operator is usually called NOT, and is represented by a bar over a variable, 
so that NOT(A) is written as A . Note that using an inverter twice produces the identity 
operator again, so  

A  = A. 

The electronic symbol for a device that performs 
the NOT operations (called a gate) is just an 
amplifier (a triangle pointing to the output) with a 
small circle to denote inversion on the output. 
Figure 1-1 shows the truth table and schematic 
diagram for a NOT gate. A truth table shows all 
possible input values with their respective output 
values. When you are designing logical circuits, 
you will find that a truth table is usually the best 
way to summarize your logic. 

 
 

 

Figure 1-1: NOT gate truth table and 
diagram. 
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Of course, truth tables and Boolean 
algebra are pretty trivial for the unary 
operators. They become useful when your 
operators accept more inputs. 

First, let’s look at two important Boolean 
operators that take two inputs, AND and 
OR. AND gives true if both inputs are 
true, while OR gives true if either input is 
true. AND is written as logical 
multiplication 

A AND B ≡ A×B ≡ AB  

since multiplying anything by 0 results in 
0. Logically, this means that if even one 
input is false (0), the output of an AND 
gate is also false (0). The OR gate is 
written as a logical addition 

 A OR B ≡ A+ B.  

This makes sense logically if you think 
that this produces a false (0) only if both 
inputs are false (0). Note that for both 
AND and OR, the easy interpretation 
results from considering what makes it 
false.  

If you invert the output of these gates, you 
have NAND and NOR gates, which are the 
fundamental building blocks of digital 
circuits. For a NAND gate, a 0 on any input 
produces a 1 on the output. For a NOR gate, 
all inputs must be 0 to produce a 1 on 
output. By “fundamental,” we mean that any 
logic combination of any number of inputs 
can be constructed from combinations of 
two-input NOR gates or two-input NAND 
gates.  

A NAND gate is usually pictured as an 
AND gate with a little circle on the end (just 
like the NOT gate) to signify inversion. 
When you draw an AND or a NAND gate, it 
is crucial to make the gate face perpendicular to the input lines. Figure 1-2 shows the 
truth table and diagram for a two-input NAND gate. A NOR gate is pictured as an OR 

 

 

Figure 1-2: NAND gate truth table and 
diagram. 

 

 

Figure 1-3: NOR gate truth table and 
diagram. 

 
 

Figure 1-4: XOR gate truth table and 
diagram. 
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gate with a little circle on the end to signify inversion. The OR gate looks similar to the 
AND gate, but its inputs enter into a curved face. Figure 1-3 shows the truth table and 
diagram for a two input NOR gate.  

In addition to the OR and AND gates there is a final common two input gate called an 
exclusive OR (or XOR).  This gate gives a true if either of the inputs are true but not it 
both inputs are true.  It is drawn as an OR gate with an extra curved line on the input 
lines. Figure 1-4 shows the truth table and diagram for a two-input NAND gate. 

Operator Synthesis 
You can build any other gate from them the two-input NOR and the two-input NAND 
gates. For example, if you want to build an inverter, you simply tie the two inputs 
together on either a two-input NOR or a two-input NAND, since they both then have the 
same truth table: 

 

If you want to use more than two inputs, you can always build them from AND or OR 
gates since both multiplication and addition are associative. These properties are shown 
in both ways of writing the formulas as: 
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However, if you want to use our basic NAND and NOR gates, then we must first note 
that inversion distributes itself in a funny way. Inverting the output of a gate is equivalent 
to inverting both inputs and simultaneously changing the gate from an AND to an OR or 
from an OR to an AND.  
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From this property, you can write a three-input AND in terms of our fundamental two-
input NAND gates:  

( )BCABCACBAABC =+=++=  
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with an inverter on one of the inputs. Note that since a double bar on top is the identity 
operator, you could have written the third expression directly, using the associative 
property, as:  

( ) ( )BCABCAABC == . 

This notation does have the problem that it can be very confusing to keep track of all the 
over-bars. 

TTL Gates 
 TTL (Transistor-Transistor Logic) gates were the first robust, fast, commonly 
available digital circuit elements. TTL and CMOS (Complementary Metal Oxide 
Semiconductor) remain the two most common types of discrete logic chips. Although 
they have different input and output impedances, they both have the same input and 
output voltage levels. The standard voltage levels for TTL logic are Low = ground, and 
High = 5 Volts. All integrated circuits (ICs) must have a ground (GND) and a power 
supply (VCC) in addition to its connections for input and output.  

 Many TTL inputs will “float high” if you do not connect them to anything. This 
will change a NAND gate into an inverter, if only one input is connected, but it will 
render a NOR gate useless. Sometimes an unconnected input oscillates between high and 
low due to stray capacitive loads. These oscillations can be initiated by a radio station 
signal or as you move your hand over a circuit due to static charges. In general, 
unconnected inputs produce suspect outputs and make for circuit-debugging headaches. It 
is a good general rule to terminate any unused inputs by connecting them to another 
input, to GND, or to VCC, according to your gate type and usage. 

 

III.  Binary Numbers & Math  
 The common and relatively simple operation in computing is integer arithmetic 
(addition and subtraction). This can be used to update a counter, compute a location in 
memory, or perform a requested mathematical operation.  

 The essence of digital circuitry is that a digital signal is forced to be one of two 
values, which are symbolically represented as 0 or 1. Given the digital nature of 
computers and other electronic devices, it is most convenient to represent numbers using 
only 0s and 1s.  This is called a binary representation (or base two).   

A.  Binary Numbers 
 In our normal math we use ten digits for a decimal (base ten) representation of 
numbers. We make up a multi-digit number using the following scheme: 

2×103 + 9×102 + 8×101 + 4×100 = 2000 + 900 + 80 + 4 = 2984 
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The base for a number is often indicated by a subscript such as “298410”, where the 
subscript is always in base ten.  Decimal is assumed if no subscript is shown.   

 We can use a similar algorithm to convert back from a binary representation to 
decimal representation.   

101102 = 1×24 + 0×23 + 1×22 + 1×21 + 0×20 = 16 + 0 + 4 + 2 + 0 = 22  

To convert binary to decimal representation one divides by two repeatedly and writes 
down the remainders. To convert 1310 to binary 

13/2 = 6 remainder 1 

6/2 = 3 remainder 0 

3/2 = 1 remainder 1 

1/2 = 0 remainder 1 

From which we can conclude the 1310 = 10112. Note that the digits come out in the order 
right to left.  

 A single binary digit is known at a bit. With n bits one can represent 2n different 
numbers. The highest binary number one can represent in n bits is given by 2n-1 (since 0 
is one of the numbers). In a binary number, the leftmost digit is the most significant bit 
(MSB) and the rightmost digit is the least significant bit (LSB).  

 Hexadecimal numbers 
 Note that it took 5 bits to represent a relatively small number like 22 in 
binary. Binary numbers have too many digits to write out for anything but the 
smallest numbers, so they are usually abbreviated in hexadecimal notation (base 
sixteen) or occasionally in octal (base eight). In hexadecimal notation, four binary 
digits are grouped together and represented by a single “digit” between 0 and 15. 
To force the digit to a single place, we will use a, b, c, d, e, and f for the digits 10 
through 15. A standard notation in computer programming is to denote a 
hexadecimal number with a 0x preceding it. Thus, 

0x16 = 1×161 + 6×160 = 16 + 6 = 22 

and  

0x2f = 2×161 + 15×160 = 32 + 15 = 47 

Two hexadecimal digits can be combined to form an eight-bit byte. A byte can 
represent numbers from 0 and 255 (0xff). 
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B.  Binary Addition 
 As the semester progresses we will start to use binary and hexadecimal numbers 
extensively.  We will be doing conversions between bases and doing arithmetic in these 
alternate bases. To start with, let us consider addition of multi-digit binary numbers.  Our 
goal is to try to understand the logic of the process in enough detail that we can 
generalize it into a digital circuit.  

 The general process looks like normal addition. Here are some examples that 
encompass all portions of the operation.  

   01012 + 00102 = 01112 

   01012 + 00012 = 01102 

   01112 + 00012 = 10002 

The main differences between decimal and binary addition are that the binary one, on 
average, carries half the time and there are only a limited number of possible operands 
and resultants for each place in the operation (i.e. only 1s or 0s).   

 If we just look at a particular digit, there are up to three bits that are inputs to 
addition. These are the ith digit of the first number, the ith digit of the second number and 
an additional bit that tells us if there was a “carry” from adding the previous digits.  The 
resulting answer can have values of 002, 012, 102, or 112. For the first two cases there 
would not be a carry to the next digit.  In the last two cases, there would be a carry, which 
is represented by the MSB.   

C.  Karnaugh Maps 
 A Karnaugh map is useful for trying to define the logic for circuits with up to four 
inputs and a single output. An example of a three-input map is shown in Figure 2-1. A 
Karnaugh map is made with the following steps:  

1. Make a truth table. Put in L or H or X (“don’t care”) for the inputs and the 
resulting outputs one expects. 

2. Set up the map. Put up to two inputs on each of the two axis. As you fill in the 
values make sure that no more than on input bit changes from one row to the next 
and from one column to the next.  

3. Fill in the map based on the truth table 

To use a map to make up a logical expression:  

1. An entire row or column indicates a simple AND of  a single variable.  

2. An adjacent pair of cells with “H” indicates an AND relationship with a pair of 
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the row and column variables.  

3. An adjacent pair of cells with “L” indicates an OR.  

4. Once all the of either the “H” or “L” cells are encompassed in simple logical 
expressions they are put together with ORs or ANDs to make a final logical 
expression.  

This simple methods of maping a sets of  ANDs and Ors will work and make a valid 
expression. It will likely not be the most efficient way of making the expression (i.e. will 
use extra gates). All of the logical operators make a different pattern on the map. You can 
play with these patterns to come up with mode efficient solutions.  

D.  Negative True Inputs 
 As time goes by this semester we will see a number of reasons for inputs coming 
into a circuit to have their “true” value as a ground. For example, switches which are 
monitoring equipment often are closed to ground in their normal state and are open when 
off (e.g. a window switch for a security system). Another reason is that a ground state 
usually uses less power so it is a better “resting” state for outputs that rarely are used to 
“assert” a 0. These are called negative true inputs.  

 These sorts of inputs seem to fly in the face of our definitions. To make it more 
intuitive, we simply pretend that they have been inverted before they reach our circuits. 
We use the standard inverted notation for these negative true inputs (e.g. C ). This 
situation is so common in practice that that we will see that most chips actually expect 
negative true inputs on certain parts of the circuit.  

E.  Assertion-Level Logic Notation  
 The routine use of negative true inputs can make the purpose of a circuit harder to 
interpret. We saw last week that we can make a number of transformations using 
inversion to, for example, see how an OR and be use to replace an AND in a circuit. We 
can use these inversion properties to make the logic easier to interpret when negative true 
inputs are present by putting inversions at the inputs.  

 This is illustrated in the example shown in Figure 2-1. Both circuits implement a 
circuit that performs the operations Q = (R+L)S with negative true inputs. The upper 
circuit uses only standard gates. Note how the use of negative true inputs makes the 
implementation hard to understand by simple inspection because the R+L operation is 
replaced by LR .   

 The figure below clarifies the situation by using inversions at the input to make 
them look like normal positive-true inputs. Then the gates actually look like the 
operations we intend to perform. It makes it a lot easier for someone looking the 
schematic to decipher how it functions. This method of trying to emphasize the logic 
instead of using standard gate symbols is known as assertion level logic.  

 The price one pays with assertion level logic is that the gates are not the standard 
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gates that one finds on chips. To build a circuit from such a schematic involves using an 
extra step (application of DeMorgan’s Theorem) to get the final gates needed to actually 
build the device. Therefore, assertion level logic is usually used to show people what you 
have built rather than for construction diagrams.  

Figure 1-5: Here are two circuits that perform the operations Q 
= (L+R)S with negative true inputs. The upper figure shows an 

example of a circuit that performs using standard gates.  

 R

QR

S

S

L

L

Q
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Design Exercise 1-1: Construct the truth table for a three input NAND. 

Design Exercise 1-2: Construct a circuit for a three input NAND, using three two-input 
NAND gates. 

Design Exercise 1-3: Construct a truth table for a two input inverted XOR (called 
XNOR), using a number of two-input NAND gates. 

Design Exercise 1-4: Construct a circuit for a two input inverted XOR, using two-input 
NAND gates. 

Design Exercise 1-5: Convert 11 and 5 to binary, add them together, and convert the 
resultant back to decimal. Did you get 16? 

Design Exercise 1-6: Design a truth table for a circuit to add two binary digits and a 
carry bit. It will have three digital inputs and produce two digital outputs (the resulting 
digit and a carry bit). 

Design Exercise 1-7: Design a Karnaugh map for the resulting digit.   

Design Exercise 1-8: Design a Karnaugh map for the carry bit. 

Design Exercise 1-9: Design a circuit to make one of the outputs from adding two binary 
digits. The circuit should produce a single output that contains the resulting digital sum 
(without carry). You can use any of the standard one and two-input logical gates in your 
design (e.g. AND, OR, NAND, NOR, XOR, and NOT). 

Design Exercise 1-10: Design a circuit to make the other output from adding two binary 
digits and a carry bit. The circuit should produce the resulting carry bit.  You can use any 
of the standard one and two-input logical gates in your design (e.g. AND, OR, NAND, 
NOR, XOR, and NOT). 

Design Exercise 1-11: Install Quartus II FPGA circuit design software on your computer 
and request a license from Altera Inc. 

 


