
Physics 351: Digital Electronics

 - 1 -

Chapter 10: Buses and Tri-state Logic

Overview

Communication is at the heart of any computer or computer application. Sooner or
later, if you want the computer to be useful, it must exchange data with another device. In
a laboratory setting, this could be an ADC, which converts a voltage into a digital signal
and then sends it to the Central Processing Unit (CPU) for analysis. Alternatively, the
CPU might generate a digital signal to send out to a DAC, which in turn will operate
some piece of apparatus. This week you will learn some basics about buses, which are
central to all computer-based communication hardware, and about the tri-state logic
which buses use.

Buses
All interface elements, from your keyboard to your mouse, eventually transport

digital information from the external world to the CPU. There are two obvious ways to do
this.

1. Serial communication is the process where clock pulses key each bit (binary
digit) in sequence into a shift register. This will seriously slow a computer that
expects to receive data in 8, 16, or 32 bit pieces. It has the benefit of only
requiring one line for input and one line for output. Sometimes input and output
occurs on the same line, although obviously not at the same time.

2. Parallel communication transfers 8, 16, or 32 bits one each clock pulse. Clearly
this is much faster, but it requires many simultaneous data lines. This is really the
only choice for very fast processes, like sending data from the CPU to external
Random Access Memory (RAM). The number of data lines could quickly become
ridiculous if you have many separate devices that communicate with the CPU.

A method to employ parallel communication, while keeping the number of lines to a
minimum, is to define a bus. Any bus uses a modest number of lines to allow the CPU to
communicate with all of its external devices simultaneously. Of course, this can only
work if each device knows when to speak and when to listen. Otherwise the devices
could try to talk to the CPU at the same time leading to chaos (called bus contention).
The device that determines who will speak and who will listen is called the bus master.
Usually, the CPU is the bus master, but some clever buses can allow other devices to take
over when necessary.

Input and output are always designated relative to the bus master. A READ means
data is going into the bus master. A WRITE means that data is going out from the bus
master.

Each bus has several lines dedicated to one of three separate duties.

Physics 351: Digital Electronics

 - 2 -

1. Control lines are (mostly)
unidirectional. They coordinate
data transfer.

2. Address lines are unidirectional.
The bus master uses them to
designate which device it wants
to communicate with.

3. Data lines are bidirectional so
that they can carry binary data
into or out from the bus master.

Defining how many physical lines
and their logical duties defines the bus.
A bus defined without a widely
recognized convention, or specification,
is called a private bus architecture. Such an architecture would be designed for specific
application and will not be generally applicable for many different uses. In most cases,
one uses a well know and defined standard for bus applications (e.g. USB, PCI, SCSI,
Firewire…).

Control Lines
Control lines are mostly output lines from the bus master to the external devices.

Since these lines are bus master output lines, they can all be simultaneously tied to many
external device inputs. Only the bus master can assert a level on one of these lines (the
master talks on these lines and all the other devices listen to these lines). These control
lines might tell an external device if it should read data or write data and when the
transfer should happen.

In a PC, the Input/Output Write (IOW) goes LOW to signify that the bus master has
written data to the bus; Input/Output Read (IOR) goes LOW to signify that an external
device should write its data to the bus so that the bus master can read from the bus. In
both cases, the falling edge on the control line triggers the timing for the transfer. Other
buses have levels for the Read and Write lines, and a separate strobe line to control
timing.

Most buses also have interrupt control lines, which are input lines to allow an external
device to signal the bus master. Since interrupts are input lines to the bus master, one
must be careful to insure that only one external device writes to an interrupt line at a time.

Address Lines
Address lines are also output lines that carry information from the bus master to all

external devices simultaneously. Again, you can connect these address lines to the input
of logic of all the external devices simultaneously because only the bus master will write
to them. Usually, the address lines go to a decoder before going to each device. A
decoder is a chip that recognizes when the address lines have been set for the specific

Figure 10-1: The bus.

Physics 351: Digital Electronics

 - 3 -

device. Older devices had “jumpers” to set the address that the decoder would recognize.
More modern devices have their addresses set by software. This provides greater
versatility.

In some buses, there are address lines that reach all of memory, and a subset of
address lines that reach external devices. An additional control line determines whether
the address means internal (RAM) or an external port. In a PC, this line is called Address-
Enable (AE).

Data Lines and Tri-State logic
Data lines serve as input and output lines depending on whether the bus master wants

to read or to write. The data lines are always connected to each device. As you know, it is
illegal to connect the outputs of logic devices together. If one output wanted to force H,
while the other wanted to force L, the result would be a lot of power dissipation and a
dead chip. Consequently, all devices that might write to the data bus lines must do so
through tri-state logic. As you might guess, tri-state logic has three states: H, L, and
disconnect (which is sometimes called high-impedance or High Z state). If an output is in
the High-Z state, it will not draw current from any other outputs to force them into any
state. It behaves just as if the gate has been disconnected from the bus. Any particular
device that wants to write to the data lines must have its Input/Output Write (IOW) line
asserted before its output leaves the High Z state. It is the core duty of the bus master to
insure that only one device is IOW enabled at a time.

The 2-Bit Bus
Consider a very simple bus that has two bits for address lines and a single data line.

This bus can connect the bus master to four devices, numbered 00, 01, 10, and 11 (in
binary, of course!), which can write data to the bus. This bus can carry data values of 0
and 1. Finally, this bus would have a read-enable (IOR). As usual, the enable line should
be active-low.

This is a total of 4 lines, and it provides four commands (four output options). If we
were to add write options to the bus via an IOW line, the number of commands would
double. It should not surprise you that this number grows quickly as the number of
address and/or data bits increases.

Read from bus (external device writes data to bus)
To command an external device to write to the bus so that the bus master can read in,

you must do three things, in order:

1. Write the address of the external device to the address lines.

2. Bring the IOR line low. This, in combination with the correct address brings the
device out of high impedance mode. The device will respond by writing out its
data to the data lines (since only that device’s output lines will now be active).

3. After you (or a CPU) read the data, you return the IOR to high.

Physics 351: Digital Electronics

 - 4 -

In all buses, there are standards for timing of these operations. Examples of standards
include that the address and a data might be required to be set for 100 ns before the IOR
goes Low, and the data is required to stay constant for another 5 ns after IOR returns
high. As a second example, external devices might be required to make their data
available no later than 550 ns after an IOR goes Low.

Buses in PCs
In the previous section, we considered a simple bus to show how a CPU could use

just a few lines to exchange data with several different external devices. If you have
direct access to the bus, this is always the fastest way to do data transfer. In fact, most
buses have extra control lines that enable Direct Memory Access (DMA) controllers to
exchange data with a computer’s Random Access Memory (RAM) sequentially to
minimize the CPU’s operations. This produces the data transfers almost as fast as the bus
clock.

However, most modern operating systems multitask, which is to say that they run
several computer programs at once, jumping between each program as the need arises.
Sometimes, the CPU will copy the contents of one part of its memory onto an external
hard disk so that it can temporarily use that part to do something else. In the old days of
small memory, this process, called overlaying or virtual memory, was often necessary
even to run a single program. You, as the programmer, were required to remember what
was where, so that you never used a variable that was not actually in memory. Modern
operating systems now do that bookkeeping for you, although all the switching back and
forth slows down the processor’s speed. The net result of multitasking is that most
operating systems do not let you have direct control of any specific part of memory or
any specific external device address. If you want that control, you must write a device
driver, which is a separate program that handles communications between your device
and the operating system. Then, other programs will use the external device by calling the
device driver. This is a continuing problem, since every time the operating system
changes, you must write a new device driver for each external device.

An alternative is to communicate through a universal and simple bus, and require that
the operating system always come with a standard driver for that bus. This slows down
your data transfer, but it makes it far easier to implement a new external device, which is
usually called a peripheral device.

