
Chapter 4:  One-Shots, Counters, and Clocks 
 

I.  The Monostable Multivibrator (One-Shot) 
The timing pulse is one of the most common elements of laboratory electronics. 

Pulses can control logical sequences with precise timing. For example, if your detector 
“sees” a charged particle or a photon, you might want to signal a clock to store the time 
that the event occurred. In that case, you will use the event to generate a standard pulse so 
that your clock always responds in the same way. Alternatively, you might need to reset 
your electronics after the event. Clearly you want the reset pulse to arrive as soon as 
possible after the data has been processed. This requires a precision time delay generator. 

A simple type of delay generator is a D type flip-flop that charges up a capacitor after 
receiving a clock edge. The charged capacitor also serves as the clear input to the D flip-
flop, so that after a fixed time (roughly RC) the flip-flop resets back to its initial state. 
The net result is a single pulse that has a duration (or pulse width) determined by the 
combination of the resistor and capacitor. The exact relationship between the time 
constant and the pulse width is specified in the datasheet for each chip type. 

If the falling edge of this pulse triggers other electronics, then you can introduce 
whatever delay you wish by choosing an appropriate pulse width. This device is called a 
monostable multivibrator, but the common name is the descriptive one-shot.  

Many one-shots have two clock inputs so that they can be triggered by either a rising 
edge or a falling edge. The typical one-shot will also have two outputs (Q and Q ) and an 
reset or clear input, which instantly sets the output to a standard condition regardless of 
the current state or clock level.  

You will find one-shots in all electronic circuits that use pulses and pulse sequences. 
They are not, however, the best sources of timed pulses. Two effects limit their 
reliability: (1) a one-shot’s pulse length varies with temperature; (2) a one-shot’s pulse 
length varies with duty cycle. It they stay high too long they do not reset as fast as they 
would for short pulses. Thus, one-shots are generally a bad choice for generating square 
waves. However, they can be very handy in getting signal timings just right in an 
asynchronous digital circuit. 

II.  Counters 
Last week, you used a D-type flip flop to transfer the data from the D input to the Q 

output on the falling edge of a clock. With one more level of feedback, we can convert 
this into a device that changes state every time the clock edge falls.  



If you connect the inverted output to the 
input then every time the clock edge fall the 
flip-flop will reverse its output (i.e. 

nn QQ =+1 ). This is shown in Figure 5-1. 
With a square-wave clock input, the output 
will change on each falling clock edge 
generating a square wave at half the 
frequency. This is called a divide-by two 
circuit. 

You can cascade these flip-flops one 
after another to continue dividing the output 
frequency. You simply drive the clock of 
another flip-flop with the output of an earlier 
flip-flop.  

We can call the state of the first gate b1 
and the state of the second gate b2 and create 
a state table of the sequence of the states of the two gates for successive clock pulses.  
From Figure 5-2, you can see that the two bits are actually count in binary. By making a 
cascade of divide by two circuits you have created a counter. 

This counter is conceptually simple but it takes time for the clock pulse to propagate 
down the line of flip-flops. If you imagine many flip-flops connected together in a ripple 
counter, then each will trigger only after a propagation delay. One triggers the next just 
like a series of falling dominos. This type of counter is dubbed ripple counter to describe 
this propagating trigger edge.  

In synchronous counters, however, all stages 
make their transitions simultaneously. This is 
usually a much better choice if you have lots of 
stages (binary digits) in your counter. Of course, 
the logic is more difficult because you only 
want a stage to flip states if all the previous 
stages were set to 1. We will play with 
synchronous counters next week.  

Shift Registers 
You can also construct a shift register by cascading D-type flip-flop without 

feedback. To make this device connect all of flip-flops use the same clock. The output of 
one flip-flop is the input of the next flip-flop.  

If data is presented to the first, it works its way down the line of gates at each clock 
tick. These are great devices to convert between serial data (one bit follows the next in 
time) and parallel data (several lines holding simultaneous information). It is an example 
of queuing circuit known as first in/first out or FIFO buffer.  It will store the data in time 
order and present at it at its output as requested by the clock. 

Figure 5-1: D type flip-flop as a divide by 
two counter. 

 
 

Figure 5-2: State table for bits b1 of 
synchronous counter. 



III.  Timing with FPGAs and Verilog 
FPGAs work best when they are used for synchronous circuits. In fact FPGAs do not 

include capacitors so you cannot use a one-shot in an FPGA circuit. While, this may 
seem like a problem, it does not pose any real difficulties since a high-frequency 
synchronous circuit can easily mimic a one-shot. 
 
Synchronous circuits in Verilog 

Synchronous FPGA circuits are implemented in Verilog with the always block. All 
the code, or circuitry, inside an always block executes on trigger indicated at the 
beginning of the always block. Here is generic Verilog code for an always block: 
 
module always_block_example (inputs …, outputs …); 
 input input1, input2, …; 
 output output1, output2, …; 
 
 output reg [N:0] output_register;  
 reg [M:0] variable_register; 
 
 always@ (trigger) 
  begin 
  … 
  [put your always block code here] 
  … 
  end 
 
endmodule 
 

The trigger can be an edge trigger such as always@ (posedge input1) or 
always@ (negedge input1). The trigger can also be a level trigger such as 
always@ (input2), which means the always block will execute whenever there is a 
level change in the input2 value. You can even use an always block without a trigger 
(though this is a little dangerous, since you will then have an infinite loop, and the timing 
is not well defined): 
 
always 
 begin 
 … 
 end 
 
The variables that are manipulated and changed inside an always block must be 
declared as type reg (i.e. a memory register of flip-flops). The always block can include 
the following statements: 
 

Blocking assignment: a = b 
The blocking assignment is executed and then the code moves on to the next 
instruction (line of code). 



 
Non-blocking assignment: a <= b 
The non-blocking assignment is executed at the same time as any other sequential 
block of non-blocking assigments (i.e. all the non-blocking assignments are executed 
in parallel). 
 
Conditional statement: 
if (a == b) 
 begin 
 … 
 [the code here will execute if the "if" condition is satified] 
 … 
 end 
Conditional statements can be included inside an always block and are a powerful 
way of manipulating registers or variables. 
 
As a general rule, if you are making a circuit in which timing must be included or in 

which it could be an issue, then you should use an always block. An always block 
guarantees that you will be constructing a synchronous circuit. In other words, always 
use always. 
 

Some important coding structures to avoid when using an always block: 
1. Nested always blocks. 
2. Registers or variables which are manipulated in several different always blocks. This 
means that several output wires are connected and trying to assign a voltage to the "D" 
input of a register flip-flop (remember last week's warning: "never tie outputs together"). 
 
Register initialization in Verilog 

Variables and registers can be initialized in Verilog with an initial block. The 
initial block is placed at the beginning of a module and is only executed once. Here 
is an example of how to code an initial block: 
 
module always_block_example (inputs …, outputs …); 
 input input1, input2, …; 
 output output1, output2, …; 
 
 output reg [N:0] output_register;  
 reg [M:0] variable_register; 
 
 initial 
  begin 
  output_register = N'b1011110…0011; 
  variable_register = M'b1111100…1101; 
  end 
 
 … 



 [the rest of your code goes here] 
 … 
endmodule 
 
 
A Verilog counter 
A counter is easy to implement in Verilog. You use an always block and increment a 
register variable by one at each trigger, as in the following 4-bit counter example: 
 
module counter_verilog(input_clock, counter_register); 
 input input_clock;    // declares the input 
 output reg [3:0] counter_register; // declares the output to be 
a 4-bit 
       // register 
 
 initial  // initial block to set the counter to zero 
  begin 
  // The next line sets counter register to zero 
  counter_register = 4'b0000;  
  end 
 
 always@ (posedge input_clock) 
  begin 
  // the following line increments the register by 
  // 1 at each clock trigger 
  counter_register <= counter_register + 4'b0001; 
  end 
endmodule 
 
 
Clocks for FPGAs 

A synchronous circuit must be triggered by a clock which has a period longer than 
any of the timing delays in the circuit. A crystal oscillator is frequently used to provide a 
periodic square wave. The DE2 board is provided with two crystal oscillators, one at 50 
MHz and the other at 27 MHz, which are connected to the FPGA at pins PIN_N2 and 
PIN_D13, repectively. A connection for an external clock is also provided via pin 
PIN_P26 (see p. 32-33 of DE2 development board manual). Alternatively, the TTL 
square wave of the function generator can be used as a clock signal. 

If actual timekeeping is not important, the frequency of the clock does not have to be 
very stable, but must only have a period longer than the longest internal timing delay in 
the circuit.  
 
 
Design Exercises: 
 
Design Exercise 4-1:  Using information from the datasheet for an 74LS123 pick 
resistors and capacitors to make a pulse of roughly 1 ms and 30 μs. 

Design Exercise 4-2:  Layout a circuit that uses two one-shots to generate a 30 µs pulse 
that starts 1 ms after a trigger. 



 
Design Exercise 4-3:  Use a single always block to construct a Quartus II FPGA project 
which will generate a 4 clock cycle output pulse that starts 23 clock cycles after an 
external input trigger goes from low to high. You can assume that the triggering pulse is 
longer than a single clock cycle. 
 
Design Exercise 4-4: Construct a Quartus II FPGA project for a divide-by-8 circuit 
which will convert a 1 MHz square wave to a 125 kHz rectangular wave. 
 
Design Exercise 4-5: Construct a Quartus II FPGA project for the DE2 board that 
converts a 6-bit binary input from the DE2 input switches to a 2-integer decimal on the 
LED 7-segment "Hex" display (see DE2 development board manual pages 30-31 for 
LED "Hex" display details). The display should not show zeros on the left side (or any 
other spurious numbers), such as "09" instead of " 9". 
 


