

Project due dates:

- ➢ Monday, November 30, 2009: Oral presentations.
- ➢ Wednesday, December 2, 2009: Voice Recorder device finished.
 - User manual for device.
 - Turn-in team wikis and lab books.

Oral Presentation

The 12-minute oral presentation should include the following:

- 1. Device objectives.
- 2. Explanation of design.
- 3. Discuss budget.
- 4. Device performance and highlights.
- 5. Conclusion -- including possible future improvements.
- > Explain what you have **done**, why your device is the **best**, how it **works**.
- All group members must speak; computer + projector presentation.
- Extra tips: be positive
 - include one figure or image per page.
 - use bullet points, short sentences ... avoid lots of text.
- Due date: Monday, November 30, 2009.

Pulse Electronics & Physics

Outline

- 1. Pulse Electronics Architecture.
- 2. Time-correlated Measurements.
- 3. Constant Fraction Discriminator.
- 4. Pulse Physics Examples.
 - \rightarrow Lifetime measurements.
 - \rightarrow Correlation functions.

Pulse Electronics Architecture

Pulse Electronics Architecture

Histogram electronics ... easily replaced by an FPGA .

[Figure adapted from Phys. Rev. A 70, 042504 (2004)]

Time-correlated Measurements

IDEA

STEP 1: Measure the time, Δt , between probing a physical system and the reception of a physics pulse (photon, particle, complex event, etc ...).

 \rightarrow Can also be the time between two physics events.

STEP 2: Repeat experiment many, many, many times ... and bin all the measured Δt 's to make a histogram (i.e. 10-20 ns bin = 3 counts, 21-30 ns bin = 25 counts, etc...).

Use FPGA to make the histogram

Pulse Discrimination

Problem 1: Pulses generally come with a range of sizes, but a common duration.

 \rightarrow The small ones are generally noise and only the bigger ones are important.

Solution \rightarrow keep only the pulses above a certain threshold.

Problem 2: Big pulses still come in a range of sizes, so triggering on a threshold will generate a trigger whose timing is dependent on the pulse height.

Solution \rightarrow Use a constant fraction trigger (discriminator).

Lifetime Measurement

Experiment:

- 1. Excite atom with a laser pulse.
- 2. Measure time Δt to detect a radiative decay photon.
- 3. Repeat many times.
- 4. Histogram of decay times, Δt , is shown on right.

Statistical error on an average of N counts in a bin is \sqrt{N}

[Figure adapted from Phys. Rev. A 70, 042504 (2004)]

Correlation Functions

In quantum optics, the correlation between light intensities at different times can tell you about the quantum statistics of the particles.

Intensity-intensity correlation functions:

$$G^{2}(\tau) = \left\langle I(t)I(t+\tau) \right\rangle$$

$$g^{2}(\tau) = \frac{\left\langle I(t)I(t+\tau)\right\rangle}{\left\langle I(t)\right\rangle^{2}}$$

 \rightarrow Measure the statistics of photon arrival times

Thermal Photons

[Figure from Morgan & Mandel, Phys. Rev. 16, 1012 (1966).]

Laser photons exhibit NO "bunching".

Thermal Bosonic Atoms

Thermal bosonic atoms are statistically identical to thermal photons !!!

[figure from A. Öttl, S. Ritter, M. Köhl, T. Esslinger, Phys. Rev. Lett. 95, 090404 (2005)]

Coherent Bosonic Atoms (BEC)

In a **Bose-Einstein Condensate (BEC)** all the atoms are in the same state. It is the analog of a laser but with atoms (coherent matter waves).

[figure from A. Öttl, S. Ritter, M. Köhl, T. Esslinger, Phys. Rev. Lett. 95, 090404 (2005)]