
Solar PowerSolar Power
for Small Hallfor Small Hall

The university is interested in installing a Solar Power Generating FacilitySolar Power Generating Facility on 
the roof of Small Hall. 

Project not official at university level yet, but SPS + Dept. are kickstarting project:

Meeting Tuesday this weekTuesday this week at 6:30pm in Small Hall conference room.

Determine which solar technology to useDetermine which solar technology to use.

How much electrical power can we expect to get.

Final budget for project is not finalized.

Paid for from Green FeesGreen Fees (i.e. your money).

Installation will occur during or immediately after renovation of Small Hallrenovation of Small Hall.

[image from www.speedace.info]



VMEC Summer Internship Program
Virginia Micro-Electronics Consortium summer program:

May-August, 2010   12-13 weeks of paid research work.

Juniors and Seniors 

Participating universities:

W&M, UVA, VirginiaTech, VCU, ODU, GMU, Virginia. Military. Inst.

Participating companies: Micron Technology, BAE Systems.

DEADLINE: October 31, 2009.

Website: www.vmec-scholars.org



FlipFlip--FlopsFlops
Outline:Outline:

1.1. Timing noiseTiming noise

Signal races, glitches

FPGA example (“assign” bad)

2.2. Synchronous circuits and memorySynchronous circuits and memory

Logic gate example

3.3. FlipFlip--Flop memoryFlop memory

RS-latch example

4.4. D and JK flipD and JK flip--flopsflops

Flip-flops in FPGAs

5. Synchronous circuit design with Synchronous circuit design with FPGAsFPGAs

FPGA example (“always” good).

Parallel circuit design with FPGAs.



Timing noiseTiming noise

Amplitude NoiseAmplitude Noise
A digital circuit is very immune to amplitude noise, since it can only have 

two values (Low or High, True or False, 0 or 1). Digital electronics circuits 
typically have error rates smaller than 1 part in 109 (no error correction).

Timing NoiseTiming Noise
Just like an analog circuit, a digital circuit can experience timing noise. 

Fortunately, good clocks are cheap and easily available, and a good 
design will eliminate the effects of timing noise.

Timing issues/errors can easily produce amplitude noise (bit errors).



Signal RaceSignal Race
The timing delays produced by wires and logic gates can produce unwanted 
(illogical) outputs.

Example: 3-input NAND gate
A
B

C
Y

AB

A

B

C

ideal Y

TimeTime



Signal RaceSignal Race
The timing delays produced by wires and logic gates can produce unwanted 
(illogical) outputs.

Example: 3-input NAND gate
A
B

C
Y

AB

A

B

C

AB

resulting Y

TimeTime

2x
gate
delay

If gate delays are too long
output pulse could disappear



Signal RaceSignal Race
The timing delays produced by wires and logic gates can produce unwanted 
(illogical) outputs.

Example: 3-input NAND gate
A
B

C
Y

AB

A

B

C

AB

actual Y

TimeTime

2x
gate
delay

Pulse is shorter than expected and delayed



Signal Race with GlitchSignal Race with Glitch

A B Y
L L L
L H H
H L H
H H L

XOR

[diagram courtesy of Altera Inc.]

A

A

B

B

BA

AB

Y

TimeTime

A

B

A

B

AB

BA

Y

resulting

resulting

resulting

Inverter delay

Inverter delay
+ component differences

[Figure adapted from Principles of Electronics: Analog & Digital by L. R. Fortney]



Signal Race with GlitchSignal Race with Glitch

A B Y
L L L
L H H
H L H
H H L

XOR

[diagram courtesy of Altera Inc.]

A

A

B

B

BA

AB

Y

TimeTime

A

B

A

B

AB

BA

Y

real

real

real

[Figure adapted from Principles of Electronics: Analog & Digital by L. R. Fortney]



Glitches with Glitches with FPGAsFPGAs

glitches

Quartus II will simulate glitches



Asynchronous DesignAsynchronous Design

Asynchronous designAsynchronous design requires very careful attention to signal delays to 
avoid producing glitches and other spurious signals.

GlitchesGlitches will produce false data and can produce very wrong results

e.g. a glitch on the most-significant-bit will produce a factor of 2 error.

Asynchronous design can produce very fast digital circuits, but is generally 
avoided due to more difficult design.
Asynchronous design can produce very fast digital circuits, but is generally 
avoided due to more difficult design.



Synchronous DesignSynchronous Design

The use of memorymemory and a clockclock can eliminate signal racessignal races and glitches.

A
B

C
Y

AB
clock

clock

flip
flop

flip
flop

Basic flipBasic flip--flop operationflop operation
The flip-flop will record and output the value at the input if the clock is HIGH. 
If the clock goes LOW, then the flip-flop does not change its value or output.

Glitches are eliminated if 1. The clock HIGH and LOW times are 
longer than any gate delays.

2. The inputs are synchronized to the clock.

in out



Synchronous TimingSynchronous Timing

A
B

C
Y

AB
clock

clock

flip
flop

flip
flop

A

B

C

Flip-flop AB

resulting Y

2x
gate
delay

TimeTime

clock

Flip-flop C
Guaranteed minimum

signal pulse



DD--type Edgetype Edge--Triggered FlipTriggered Flip--FlopFlop
Generally, the flip-flop changes state on a clock signal “edge”, not the level. 

The flip-flop takes the value just beforejust before the clock “edge”.

[Texas Instruments 74LS74 flip-flop datasheet]

Note: A flip-flop saves information (i.e. 1 bit);  it does not modify it.

clock

D

Q

ts th

For 74LS74: minimum ts = 20 ns
minimum th = 5 nsD

clock

Q

Q

R or CLR

S or PRE

input output



DD--type Edgetype Edge--Triggered FlipTriggered Flip--FlopFlop
Generally, the flip-flop changes state on a clock signal “edge”, not the level. 

The flip-flop takes the value just beforejust before the clock “edge”.

[Texas Instruments 74LS74 flip-flop datasheet]

Note: A flip-flop saves information (i.e. 1 bit);  it does not modify it.

clock

D

Q

ts th

For 74LS74: minimum ts = 20 ns
minimum th = 5 nsD

clock

Q

Q

R or CLR

S or PRE

input output

rising-edge
trigger



Synchronous Timing (revisited)Synchronous Timing (revisited)

A
B

C
Y

AB
clock

clock

flip
flop

flip
flop

A

B

C

Flip-flop AB

resulting Y

TimeTime

clock

Flip-flop C



How does a flipHow does a flip--flop work?flop work?
Basic flip-flop: the SR latch Logic table

Q0 = value before
S&R changes

R = 0 & S = 0:

S = 0 & assume Q = 0  Q = 1.

S = 0 & assume Q = 1  Q = 1.

R = 0 & assume Q = 0  Q = 1.

R = 0 & assume Q = 1  Q = 1.



How does a flipHow does a flip--flop work?flop work?
Basic flip-flop: the SR latch Logic table

Q0 = value before
S&R changes

R = 0 & S = 0:

S = 0 & assume Q = 0  Q = 1.

S = 0 & assume Q = 1  Q = 1.

R = 0 & assume Q = 0  Q = 1.

R = 0 & assume Q = 1  Q = 1.

consistent R=0 & S=0 Q=1 & Q=1



How does a flipHow does a flip--flop work?flop work?
Basic flip-flop: the SR latch Logic table

Q0 = value before
S&R changes

R = 0 & S = 1:R = 0 & S = 1:

S = 1 & assume Q = 0  Q = 1.

S = 1 & assume Q = 1  Q = 0.

R = 0 & assume Q = 0  Q = 1.

R = 0 & assume Q = 1  Q = 1.



How does a flipHow does a flip--flop work?flop work?
Basic flip-flop: the SR latch Logic table

Q0 = value before
S&R changes

R = 0 & S = 1:R = 0 & S = 1:

S = 1 & assume Q = 0  Q = 1.

S = 1 & assume Q = 1  Q = 0.

R = 0 & assume Q = 0  Q = 1.

R = 0 & assume Q = 1  Q = 1.

consistent R=0 & S=1 Q=0 & Q=1



How does a flipHow does a flip--flop work?flop work?
Basic flip-flop: the SR latch Logic table

Q0 = value before
S&R changes

R = 1 & S = 0:R = 1 & S = 0:

The opposite of R = 0 & S = 1 by symmetry.



How does a flipHow does a flip--flop work?flop work?
Basic flip-flop: the SR latch Logic table

Q0 = value before
S&R changes

R = 1 & S = 1:R = 1 & S = 1:

S = 1 & assume Q = 0  Q = 1.

S = 1 & assume Q = 1  Q = 0.

R = 1 & assume Q = 0  Q = 1.

R = 1 & assume Q = 1  Q = 0.



How does a flipHow does a flip--flop work?flop work?
Basic flip-flop: the SR latch Logic table

Q0 = value before
S&R changes

R = 1 & S = 1:R = 1 & S = 1:

S = 1 & assume Q = 0  Q = 1.

S = 1 & assume Q = 1  Q = 0.

R = 1 & assume Q = 0  Q = 1.

R = 1 & assume Q = 1  Q = 0.

consistent R=1 & S=1 Q=0 & Q=1

consistent R=1 & S=1 Q=1 & Q=0



How does a flipHow does a flip--flop work?flop work?
Basic flip-flop: the SR latch Logic table

Q0 = value before
S&R changes

R = 1 & S = 1:R = 1 & S = 1:

S = 1 & assume Q = 0  Q = 1.

S = 1 & assume Q = 1  Q = 0.

R = 1 & assume Q = 0  Q = 1.

R = 1 & assume Q = 1  Q = 0.

consistent R=1 & S=1 Q=0 & Q=1

consistent R=1 & S=1 Q=1 & Q=0

Two settings are possibleTwo settings are possible
i.e. flipi.e. flip--flop keeps its state.flop keeps its state.



SR Latch Switch SR Latch Switch DebouncerDebouncer
SR latch flip-flops are not used much for memory, but they are 

used for debouncing switches.

Switch Bounce:Switch Bounce:

When a switch is toggled it will not go smoothly from HIGH to LOW, or 
vice versa.

time

Volts Volts

time

“bouncing switch” “debounced switch”

+5V

R

R



Clocked DClocked D--type Latchtype Latch

Logic tableS

R

Clock Circuit Analysis:Clock Circuit Analysis:
C = 1 & D = 1  S = 0 & R = 1.
C = 1 & D = 0  S = 1 & R = 0.

C = 0 & D = 1  S = 1 & R = 1.
C = 0 & D = 0  S = 1 & R = 1.



Clocked DClocked D--type Latchtype Latch

Logic tableS

R

Clock Circuit Analysis:Clock Circuit Analysis:
C = 1 & D = 1  S = 0 & R = 1.
C = 1 & D = 0  S = 1 & R = 0.

C = 0 & D = 1  S = 1 & R = 1.
C = 0 & D = 0  S = 1 & R = 1.

Clock HIGH:Clock HIGH: D sets the flip-flop state

Clock LOW:Clock LOW: flip-flop state is locked



Clocked DClocked D--type Latchtype Latch

Logic table

Clock Circuit Analysis:Clock Circuit Analysis:
C = 1 & D = 1  S = 0 & R = 1.
C = 1 & D = 0  S = 1 & R = 0.

C = 0 & D = 1  S = 1 & R = 1.
C = 0 & D = 0  S = 1 & R = 1.

Clock HIGH:Clock HIGH: D sets the flip-flop state

Clock LOW:Clock LOW: flip-flop state is locked

D

clock

Q

Q

input output



MasterMaster--Slave DSlave D--type Fliptype Flip--FlopFlop

Note: The flip-flop triggers on a the falling edge of the clock.



74LS74 D74LS74 D--type edgetype edge--triggered fliptriggered flip--flopflop

Note:Note: The flip-flop triggers on the rising edge of the clock.

[Texas Instruments 74LS74 flip-flop datasheet]

Both PRE and CLR behave like S and R 
inputs, respectively, on the SR latch.

IMPORTANT:IMPORTANT: Both PRE and CLR must 
be high for normal D-type operation.



74LS74 D74LS74 D--type edgetype edge--triggered fliptriggered flip--flopflop

Note:Note: The flip-flop triggers on the rising edge of the clock.

[Texas Instruments 74LS74 flip-flop datasheet]

Both PRE and CLR behave like S and R 
inputs, respectively, on the SR latch.

IMPORTANT:IMPORTANT: Both PRE and CLR must 
be high for normal D-type operation.

D

clock

Q

Q

input output

CLR

PRE



JKJK--type fliptype flip--flopflop

J
clock

Q

Q

input output

Kinput

C

J K Qn+1

0 0 Qn

1 0 0
0 1 1
1 1 Qn

Logic table
for clock falling edge

JK-type flip-flops are used in counters.



FlipFlip--flops in flops in FPGAsFPGAs

LUTLUTin
pu

ts
in

pu
ts

MemoryMemory
(a few bits)

CLOCK triggersCLOCK triggers
clockclock

signalssignals

globalglobal

locallocal ou
tp

ut
s

ou
tp

ut
s

feedbackfeedback

Architecture of a single Logic ElementArchitecture of a single Logic Element

Frequently a DFrequently a D--type Fliptype Flip--FlopFlop

FPGAsFPGAs are already setare already set--up for synchronous circuit designsup for synchronous circuit designs



FlipFlip--flops in flops in FPGAsFPGAs

LUTLUTin
pu

ts
in

pu
ts

MemoryMemory
(a few bits)

CLOCK triggersCLOCK triggers
clockclock

signalssignals

globalglobal

locallocal ou
tp

ut
s

ou
tp

ut
s

feedbackfeedback

Architecture of a single Logic ElementArchitecture of a single Logic Element

Frequently a DFrequently a D--type Fliptype Flip--FlopFlop

FPGAsFPGAs are already setare already set--up for synchronous circuit designsup for synchronous circuit designs



Synchronous programming in Synchronous programming in VerilogVerilog (I)(I)



Synchronous programming in Synchronous programming in VerilogVerilog (I)(I)

Clock Clock 
variablevariable

output registeroutput register
(i.e. flip(i.e. flip--flop memory )flop memory )



Synchronous programming in Synchronous programming in VerilogVerilog (I)(I)

Clock Clock 
variablevariable

output registeroutput register
(i.e. flip(i.e. flip--flop memory )flop memory )

Read as “always at the positive clock edge do the 
following … ”
“always” is the core command for synchronous programming, it 
should be used as frequently as possible. 

“assign” should be used as little as possible. It is only useful for DC-
type signals (signals that don’t change).

Read as Read as ““always at the positive clock edge do the always at the positive clock edge do the 
following following …… ””
““alwaysalways”” is the core command for synchronous programming, it is the core command for synchronous programming, it 
should be used as frequently as possible. should be used as frequently as possible. 

““assignassign”” should be used as little as possible. It is only useful for DCshould be used as little as possible. It is only useful for DC--
type signals (signals that dontype signals (signals that don’’t change).t change).



Synchronous programming in Synchronous programming in VerilogVerilog (II)(II)
QuartusQuartus II circuit simulationII circuit simulation



Synchronous programming in Synchronous programming in VerilogVerilog (II)(II)

No more glitchesNo more glitches

ClockClock
LineLine

QuartusQuartus II circuit simulationII circuit simulation



How did the FPGA implement the circuit?How did the FPGA implement the circuit?

Tools > Netlists > Technology Map Viewer



How did the FPGA implement the circuit?How did the FPGA implement the circuit?

Tools > Netlists > Technology Map Viewer

DD--type edgetype edge--triggeredtriggered
flipflip--flopsflops



Always use Always use 
““alwaysalways””

A. Stummer, U. of Toronto._



Parallel programming in Parallel programming in VerilogVerilog

The “always” structure is used for exploiting the parallel 
processing features of the FPGA.

Parallel processing  must almost always be synchronous if 
several processes exchange data.

Parallel and Sequential processing examples:

SequentialSequential
always@ (negedge clock)

begin
a = b;
c = a;
end

ParallelParallel
always@ (negedge clock)

begin
a <= b;
c <= a;
end



Parallel programming in Parallel programming in VerilogVerilog

The “always” structure is used for exploiting the parallel 
processing features of the FPGA.

Parallel processing  must almost always be synchronous if 
several processes exchange data.

Parallel and Sequential processing examples:

SequentialSequential
always@ (negedge clock)

begin
a = b;
c = a;
end

ParallelParallel
always@ (negedge clock)

begin
a <= b;
c <= a;
end

c = b a = b

c = a (previous value) 

executedexecuted
simultaneouslysimultaneously


