PHYS 401: Electricity & Magnetism II Due date: Wednesday, February 3, 2021

Problem set #1

Griffiths 4th Ed. problems

1) Problem 1.13

Let \vec{r} be the separation vector from a fixed point (x', y', z') to the point (x, y, z), and let r be its length. Show that

- (a) $\vec{\nabla}(r^2) = 2\vec{r}$.
- (b) $\vec{\nabla}(1/r) = -\hat{r}/r^2$.
- (c) What is the *general* formula for $\overrightarrow{\nabla}(r^n)$?

2) Problem 1.16

Sketch the vector function

$$\vec{v} = \hat{r}/r^2$$

and compute its divergence. The answer may surprise you ... can you explain it?

3) Problem 1.27

Prove that the divergence of a curl is always zero.

Check it for the function $\vec{v}_a = x^2 \hat{x} + 3xz^2 \hat{y} - 2xz\hat{z}$.

4) Problem 1.28

Prove that the curl of a gradient is always zero.

Check it for $f(x, y, z) = x^2y^3z^4$.