Pillars of Electrostatics

1. Inverse square law: Force $\propto 1/r^2$

2. Superposition principle

IF we assume that $F_{Coulomb} \propto 1/r^{2+\epsilon}$ THEN what limit can we place on ϵ ?

IF we assume that $F_{Coulomb} \propto 1/r^{2+\epsilon}$ THEN what limit can we place on ϵ ?

ightharpoonup Cavendish (1772): $|\varepsilon| \le 0.02$

IF we assume that $F_{Coulomb} \propto 1/r^{2+\epsilon}$ THEN what limit can we place on ϵ ?

- \triangleright Cavendish (1772): |ε| ≤ 0.02
- \triangleright Maxwell (1870s): |ε| ≤ 5×10⁻⁵

IF we assume that $F_{Coulomb} \propto 1/r^{2+\epsilon}$ THEN what limit can we place on ϵ ?

- ightharpoonup Cavendish (1772): $|\varepsilon| \le 0.02$
- > Maxwell (1870s): |ε| ≤ 5×10⁻⁵
- \triangleright Plimpton and Lawson (1936): $|\epsilon| \le 2 \times 10^{-9}$

IF we assume that $F_{Coulomb} \propto 1/r^{2+\epsilon}$ THEN what limit can we place on ϵ ?

- \triangleright Cavendish (1772): |ε| ≤ 0.02
- > Maxwell (1870s): |ε| ≤ 5×10⁻⁵
- \triangleright Plimpton and Lawson (1936): |ε| ≤ 2×10⁻⁹
- \triangleright Williams, Faller, and Hill (1971): ε = (2.7 ± 3.1) × 10⁻¹⁶

Inverse Square Law vs. Quantum Electrodynamics

For r $<< \lambda_{Compton}$ QED renormalizes the charge of the e^-

$$V(r) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

$$\lambda_{Compton} = \frac{h}{mc}$$
= 2.4 × 10⁻¹² m for e⁻¹

$$\alpha \simeq \frac{1}{137}$$

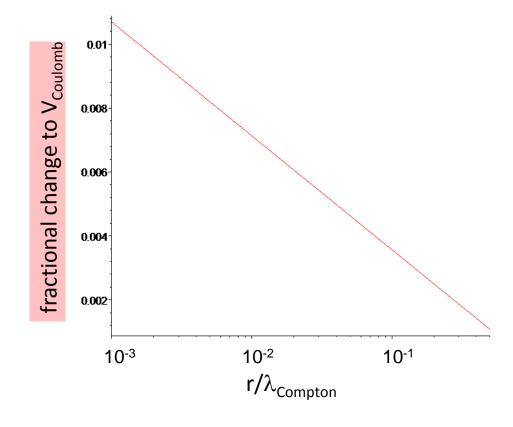
Inverse Square Law vs. Quantum Electrodynamics

For r $<< \lambda_{Compton}$ QED renormalizes the charge of the e^-

$$V(r) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \left(1 - \frac{2\alpha}{3\pi} \ln(r/\lambda_{Compton}) \right)$$

$$\lambda_{Compton} = \frac{h}{mc}$$
= 2.4 × 10⁻¹² m for e⁻¹

$$\alpha \simeq \frac{1}{137}$$


Inverse Square Law vs. Quantum Electrodynamics

For r $<< \lambda_{Compton}$ QED renormalizes the charge of the e^-

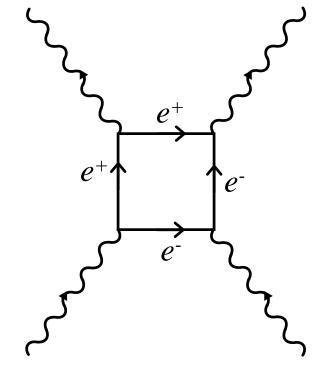
$$V(r) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \left(1 - \frac{2\alpha}{3\pi} \ln(r/\lambda_{Compton}) \right)$$

$$\lambda_{Compton} = \frac{h}{mc}$$
= 2.4 × 10⁻¹² m for e⁻¹

$$\alpha \simeq \frac{1}{137}$$

Superposition Principle

In vacuum, the superposition principle ($\vec{E}_{total} = \vec{E}_1 + \vec{E}_2$) is true.


How true?

QED predicts that photons begin to interact with each other (vacuum polarization effect) for

$$E - field \sim 10^{18} V/m$$

 $B - field \sim 10^{9} T$

Photon-photon scattering in vacuum has NOT been detected yet.

In non-linear optical media, photonphoton scattering is a common effect.

Note : $E_{max,LAB} \sim 10^{14} \ V/m$ (ultrafast laser pulse)

Conclusion

1. Inverse square law: Force $\propto 1/r^2$

2. Superposition principle

Both of these statements are true over the range of experimental conditions where one would use classical electrodynamics/electrostatics.