PHYS 401: Electricity & Magnetism I Due date: Wednesday, February 24, 2021

Problem set #3

- 1) **Problem 2.5**
- 2) **Problem 2.6**
- **3) Problem 2.7** (solve without Gauss's Law)
- **4) Problem 2.9**
- **5) Problem 2.12**
- 6) Problem 2.18

7) Two spheres

Consider a sphere of radius 2a whose volume has a uniform charge density ρ . A spherical cavity of radius a is removed from the sphere, as shown in the figure. Calculate the electric field (vector) within the cavity.

8) Vector calculus review: Archimedes' principle for an object of arbitrary shape The pressure p as a function of depth in body of water (i.e. lake, ocean, bucket) is given by $p = \rho g h$, where ρ is the density of water (10³ kg/m³), g is the local acceleration due to gravity (9.8 m/s²), and h is the depth below the water surface (h is positive).

The pressure on the surface of a (fully) submerged object manifest itself as a force per unit area \vec{f} that is perpendicular to the surface, i.e. $\vec{f} = -p\hat{n}$, where \hat{n} is a unit vector perpendicular to the surface (pointing out).

Task: Use the divergence theorem to show that the water pressure generates a vertically upwards force of $\vec{F} = \rho V g \ \hat{z}$, where V is the volume of the object regardless of its shape $(\hat{z} \text{ points vertically upwards})$. In other words, the water pressure produces an upwards buoyancy force that is equal to the mass of the displaced water.