PHYS 401: Electricity \& Magnetism II
Due date: Wednesday, February 1, 2023

Problem set \#1

Griffiths $4^{\text {th }}$ Ed. problems

1) Problem 1.13

Let \vec{r} be the separation vector from a fixed point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ to the point (x, y, z), and let r be its length. Show that
(a) $\vec{\nabla}\left(r^{2}\right)=2 \vec{r}$
(b) $\vec{\nabla}(1 / r)=-\hat{r} / r^{2}$
(c) What is the general formula for $\vec{\nabla}\left(r^{n}\right)$?
2) Problem 1.16

Sketch the vector function

$$
\vec{v}=\hat{r} / r^{2}
$$

and compute its divergence. The answer may surprise you ... can you explain it?

3) Problem 1.27

Prove that the divergence of a curl is always zero.
Check it for the function $\vec{v}_{a}=x^{2} \hat{x}+3 x z^{2} \hat{y}-2 x z \hat{z}$.

4) Problem 1.28

Prove that the curl of a gradient is always zero.
Check it for $f(x, y, z)=x^{2} y^{3} z^{4}$.

