Pillars of Electrostatics

1. Inverse square law: Force $\propto 1 / r^{2}$
2. Superposition principle

Inverse Square Law

IF we assume that $F_{\text {Coulomb }} \propto 1 / r^{2+\varepsilon}$ THEN what limit can we place on ε ?

Inverse Square Law

IF we assume that $F_{\text {Coulomb }} \propto 1 / r^{2+\varepsilon}$ THEN what limit can we place on ε ?
$>$ Cavendish (1772): $|\varepsilon| \leq 0.02$

Inverse Square Law

IF we assume that $F_{\text {Coulomb }} \propto 1 / r^{2+\varepsilon}$ THEN what limit can we place on ε ?
$>$ Cavendish (1772): $|\varepsilon| \leq 0.02$
$>$ Maxwell (1870s): $|\varepsilon| \leq 5 \times 10^{-5}$

Inverse Square Law

IF we assume that $\mathrm{F}_{\text {Coulomb }} \propto 1 / \mathrm{r}^{2+\varepsilon}$ THEN what limit can we place on ε ?
> Cavendish (1772): $|\varepsilon| \leq 0.02$
$>$ Maxwell (1870s): $|\varepsilon| \leq 5 \times 10^{-5}$
> Plimpton and Lawson (1936): $|\varepsilon| \leq 2 \times 10^{-9}$

Inverse Square Law

IF we assume that $\mathrm{F}_{\text {Coulomb }} \propto 1 / \mathrm{r}^{2+\varepsilon}$ THEN what limit can we place on ε ?
$>$ Cavendish (1772): $|\varepsilon| \leq 0.02$
$>$ Maxwell (1870s): $|\varepsilon| \leq 5 \times 10^{-5}$
$>$ Plimpton and Lawson (1936): $|\varepsilon| \leq 2 \times 10^{-9}$
$>$ Williams, Faller, and Hill (1971): $\varepsilon=(2.7 \pm 3.1) \times 10^{-16}$

Inverse Square Law

vs.

Quantum Electrodynamics

For $r \ll \lambda_{\text {Compton }}$ QED renormalizes the charge of the e^{-}

$$
V(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
$$

$$
\begin{aligned}
\lambda_{\text {compton }} & =\frac{h}{m c} \\
& =2.4 \times 10^{-12} \mathrm{~m} \text { for } \mathrm{e}^{-} \\
\alpha & \simeq \frac{1}{137}
\end{aligned}
$$

Inverse Square Law

vs.

Quantum Electrodynamics

For $r \ll \lambda_{\text {Compton }}$ QED renormalizes the charge of the e^{-}

$$
\begin{aligned}
& \begin{array}{l}
V(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}\left(1-\frac{2 \alpha}{3 \pi} \ln \left(r / \lambda_{\text {Compton }}\right)\right) \\
\begin{aligned}
\lambda_{\text {Compton }} & =\frac{h}{m c} \\
& =2.4 \times 10^{-12} \mathrm{~m} \text { for } \mathrm{e}^{-} \\
\alpha & \simeq \frac{1}{137}
\end{aligned}
\end{array} .
\end{aligned}
$$

Inverse Square Law
 vs.

Quantum Electrodynamics

For $r \ll \lambda_{\text {Compton }}$ QED renormalizes the charge of the e^{-}

$$
\begin{aligned}
& V(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}\left(1-\frac{2 \alpha}{3 \pi} \ln \left(r / \lambda_{\text {Compton }}\right)\right) \\
& \begin{aligned}
\lambda_{\text {Compton }} & =\frac{h}{m c} \\
& =2.4 \times 10^{-12} \mathrm{~m} \text { for } \mathrm{e}^{-}
\end{aligned} \\
& \quad \alpha \simeq \frac{1}{137}
\end{aligned}
$$

Superposition Principle

In vacuum, the superposition principle $\left(\vec{E}_{\text {total }}=\vec{E}_{1}+\vec{E}_{2}\right)$ is true.

How true?
QED predicts that photons begin to interact with each other (vacuum polarization effect) for

$$
\begin{aligned}
E-\text { field } & \sim 10^{18} \mathrm{~V} / \mathrm{m} \\
B-\text { field } & \sim 10^{9} \mathrm{~T}
\end{aligned}
$$

Photon-photon scattering in vacuum has NOT been detected yet.

In non-linear optical media, photonphoton scattering is a common effect.

Note : $E_{\max , L A B} \sim 10^{14} \mathrm{~V} / \mathrm{m}$ (ultrafast laser pulse)

Conclusion

1. Inverse square law: Force $\propto 1 / r^{2}$
2. Superposition principle

Both of these statements are true over the range of experimental conditions where one would use classical electrodynamics/electrostatics.

