PHYS 401: Electricity \& Magnetism I
Due date: Wednesday, February 15, 2023

Problem set \#3

1) Problem 2.5
2) Problem 2.6
3) Problem 2.7 (solve without Gauss's Law)
4) Problem 2.9
5) Vector calculus review: Archimedes' principle for an object of arbitrary shape The pressure p as a function of depth in body of water (i.e. lake, ocean, bucket) is given by $p=\rho g h$, where ρ is the density of water $\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right), g$ is the local acceleration due to gravity ($9.8 \mathrm{~m} / \mathrm{s}^{2}$), and h is the depth below the water surface (h is positive).
The pressure on the surface of a (fully) submerged object manifest itself as a force per unit area \vec{f} that is perpendicular to the surface, i.e. $\vec{f}=-p \hat{n}$, where \hat{n} is a unit vector perpendicular to the surface (pointing out).
Task: Use the divergence theorem to show that the water pressure generates a vertically upwards force of $\vec{F}=\rho V g \hat{z}$, where V is the volume of the object regardless of its shape (\hat{z} points vertically upwards). In other words, the water pressure produces an upwards buoyancy force that is equal to the mass of the displaced water.
