
Classical Monte Carlo

Simulations

… you can calculate anything with dice.
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… quite difficult to do analytically.

Additional considerations:

molecule re-thermalize on 
each wall bounce.

Molecule ejected from wall 
with a cosine distribution.

Solution: simulate many individual molecular 
trajectories and look at statistics (<nexit>, σn)

… fairly simple and quick on a computer.



Definition

The Monte Carlo method is any numerical method in which 
the solution is obtained by averaging over many 
probabilistic simulation instances.
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xi=probabilistic variable

i.e. choose xi‘s randomly on [a,b] with a 
uniform probability distribution.



Theorem
If f(x) is well behaved on [a,b] (i.e. does not diverge), then in the 
limit of N→∞, the following is true (in the probabilistic sense)
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Advantages

Monte Carlo simulations are generally easy to 
formulate and set-up.

Monte Carlo simulations are generally faster than 
other numerical methods, especially for problems in a 
large number of dimensions.


