Classical Monte Carlo

Simulations
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... you can calculate anything with dice.
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Additional considerations:

= molecule re-thermalize on
each wall bounce.

= Molecule ejected from wall
with a cosine distribution.

... quite difficult to do analytically.

Solution: simulate many individual molecular
trajectories and look at statistics (<n.,;>, G,)

... fairly simple and quick on a computer.




Definition

The Monte Carlo method is any numerical method in which
the solution is obtained by averaging over many
probabilistic simulation instances.
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Example: Numerical Integration

The Monte Carlo method is frequently used to evaluate difficult integrals

(in many dimensions):

b
“calculus” average: <f(X)>[ o1: caleul =LJ‘ f (x)dx
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“statistical” average: <f (X)>[a’b];St(,msticaI =N Z f(x)

i=1
x; [a,b]
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x;=probabilistic variable

i.e. choose x;‘s randomly on [a,b] with a
uniform probability distribution.



Theorem

If f(x) Is well behaved on [a,b] (i.e. does not diverge), then in the
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where af(x)’N:ﬁ(zf(xi)Z—N<f(x)>[2a’b],Nj Z(f(x) (£ (X))’

=standard deviation of simulatiors



Advantages

» Monte Carlo simulations are generally easy to
formulate and set-up.

» Monte Carlo simulations are generally faster than
other numerical methods, especially for problems in a
large number of dimensions.



