

L (orbital angular momentum)

L (orbital angular momentum)

The D2 line Cycling Transition

F (total angular momentum)

The D2 line Cycling Transition

F (total angular momentum)

Figure A.2: Branching ratios for 87 Rb. Multiply by the circled number in the left(right) column to get the branching ration for the D2(D1) line.

[source: unknown PhD Thesis]

1. Doppler Cooling – optical molasses.

2. Doppler temperature.

3. Magneto-optical trap.

Doppler Cooling: How can a laser cool?

Magneto-Optical Trap (MOT)

Problem:

Doppler cooling reduces momentum spread of atoms only.

- \rightarrow Similar to a damping or friction force (optical molasses).
- \rightarrow Does not reduce spatial spread.
- \rightarrow Does not confine the atoms.

Magneto-Optical Trap (MOT)

Problem:

Doppler cooling reduces momentum spread of atoms only.

- \rightarrow Similar to a damping or friction force (optical molasses).
- \rightarrow Does not reduce spatial spread.
- \rightarrow Does not confine the atoms.

Solution:

Spatially tune the laser-atom detuning with the Zeeman shift from a spatially varying magnetic field.

