
Physics 430 and 631: Quantum Optics & Atomics 

Due date: Thursday, September 4, 2025 

 

 

Problem Set #1 

 

 

I. Coherence 101: Hanbury-Brown and Twiss Experiment 
Read the Hanbury-Brown and Twiss paper and the associated letter by E. Purcell. 

1. Write a paragraph explaining the Brown-Twiss effect using classical physics. 

2. Write a paragraph explaining the Brown-Twiss effect using quantum physics. 

 

 

II. Semi-classical atom 
Consider a semi-classical atom consisting of a very heavy nucleus with charge +𝑞𝑒 

connected by a spring to an electron with charge −𝑞𝑒 mass 𝑚𝑒. This atom behaves as a 

harmonic oscillator with natural frequency 𝜔0 (value undefined at this point, but assumed 

to be very high frequency, e.g., 1014 Hz). 

This harmonic oscillator experiences radiation damping, such that when excited the 

radial position 𝑟 of the electron decays as 𝑟(𝑡) = 𝑟0𝑒
−𝛾𝑡sin⁡(𝜔0𝑡), where 𝑟0 is the 

equilibrium position of the electron, and 𝛾 is the damping constant. 

 

Electromagnetically driven atom 

Next, we direct an electromagnetic plane wave at this atom (located at the origin). The 

electric field of the plane wave is given by 

𝐸⃗ (𝑡) = 𝐸0 cos(𝑘𝑦 − 𝜔𝑡) 𝑧̂ , 

where 𝐸0 is the amplitude of the wave, 𝜔 is the frequency of the wave (in rads/s),  𝑘 = 𝜔/𝑐 

is the wavenumber (i.e., “wavevector”), and 𝑐 is the speed of light in vacuum. We will 

ignore any magnetic forces associated with this wave. 

1. Show that the equation of motion for the atom’s electron’s position 𝑧(𝑡) is given by: 

𝑧̈ + 2𝛾𝑧̇ + 𝜔0
2𝑧 = −

𝑞𝑒

𝑚𝑒
𝐸0 cos(𝜔𝑡) 

2. Ignoring any transient behavior, show that the steady state solution is oscillatory with 

the following form 

𝑧(𝑡) = 𝑍0 cos(𝜔𝑡 − 𝜙) , 

where the amplitude is given by 

𝑍0 =
−(𝑞𝑒/𝑚𝑒)𝐸0

√(𝜔0
2 − 𝜔2)2 + 4𝜔2𝛾2

 

 

and the phase is given by 

𝜙 = tan−1 (
2𝜔𝛾

𝜔0
2 − 𝜔2

) 

 

 



3. Sketch plots of 𝑍0(𝜔) and 𝜙(𝜔) in the vicinity of 𝜔 = 𝜔0 over a range of roughly ±5𝛾. 

 

4. This driven atom will emit dipole radiation. The total average optical power 𝑃 radiated 

by an oscillating dipole is the following: 

𝑃 =
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 where 𝜀0 is the permittivity of free space. 

We now consider the case of a driven optical transition with 𝜔0 ≈ 2𝜋 × 1014 Hz and 

𝛾 ≈ 2𝜋 × 10 MHz. Show that for this parameter range, the radiated power can be written 

as 

𝑃 ≈
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where 𝛿 = 𝜔 − 𝜔0 is the detuning of the drive frequency from the transition. 

 

5. The last fraction in the expression for the radiated power 𝑃 in (4) is a Lorentzian function. 

 - Sketch a plot of this Lorentzian versus 𝛿 (e.g., over a range of roughly ±5𝛾). 

 - Calculate the “full width at half max” (FWHM) for this curve. 

 

 

---------------- Graduate student problem --------------- 

 

III. Classical noise: Nyquist's derivation of Johnson Noise 
(example of the Fluctuation-Dissipation Theorem) 

Thermal agitation of electrons produces the resistance to electrical conduction in a 

resistor with resistance R. This same thermal agitation moves the electrons around 

randomly inside the resistor so as to produce a small fluctuating voltage, V(t), across the 

resistor terminals, which is referred to as Johnson noise. Since R and V(t) are produced by 

the same phenomena (thermal agitation of electrons), they are also related. In this problem, 

you will derive the relation between V(t), R, and T (temperature). 

We will model a resistor with a fluctuating voltage, V(t), across its terminals as an 

ideal resistor in series with a fluctuating signal generator. In Nyquist's derivation, two 

identical "noisy" resistors with resistance R are connected via a transmission line with 

impedance R, so as to produce a 1-d electrical circuit equivalent of the blackbody 

radiation problem, as shown in the figure below. The impedance R of the transmission 

line guarantees that signals generated on one end of the transmission line will be 

completely absorbed at the other end, without reflections. 

 

R

V(t) V(t)

R

transmission line

L

R

V(t) V(t)

R

transmission line

L



 

1.  Transmission line modes 

The boundary condition for the transmission line is that the electromagnetic field 

must have a node at either end of the transmission line. The speed of light in the 

transmission line is ct. 

a. Calculate the permitted wavelengths of the modes of the electromagnetic field of 

the transmission line. 

b. Calculate the permitted frequencies of the modes of the electromagnetic field of the 

transmission line. 

c. Show that over a large frequency span, f, the number of modes of the 

electromagnetic field is N(f) = (2L/ct)f. 

 

2.  Thermal population of the electromagnetic modes 

According to the equipartition theorem, each mode of the electromagnetic field (i.e. 

degree of freedom) has a total energy of kT stored in it, where k is Boltzmann's constant. 

This energy comes from the two resistors which are both at temperature T. 

a. How long does it take for thermal energy emitted by one resistor to arrive at the 

other resistor (and be absorbed)? 

b. Show that the electromagnetic power dP(f), in a frequency band df, absorbed by a 

resistor is dP(f)=kTdf. 

 

3.  Johnson noise 

In thermal equilibrium, the power absorbed by a resistor in a given frequency range is 

also the power emitted by the resistor in the same frequency range due to the fluctuating 

voltage, V(t), on its terminals. 

a. Calculate the current I generated by the fluctuating voltage source on one of the 

two resistors. 

b. Calculate the electrical power dissipated in one resistor due to the current 

generated by the fluctuating voltage source of the other resistor. 

c. Show that over a frequency range f, the RMS value of the fluctuating voltage (i.e. 

Johnson noise) from a single resistor must be given by the expression: 

fRkTVRMS = 4  

 

d. Calculate the RMS Johnson voltage noise for a 10 MΩ resistor at room 

temperature over a 1 kHz bandwidth. 

 

 

 

 


