

Physics 430 and Physics 631 Quantum Optics & Atomics

[Kasevich group, Stanford U.]

Instructor

Prof. Seth Aubin

Office: room 255, Small Hall, tel: 1-3545

Lab: room 069, Small Hall, tel: 1-3532

e-mail: saaubi@wm.edu

web: http://www.physics.wm.edu/~saubin/index.html

Office hours: Wednesdays 4-5 pm

Mohsin Jamil

Office: rooms 023 and 024, Small Hall

e-mail: mjamil@wm.edu

Office hours: Thursdays 4-5 pm

Course Objectives (I)

Introduce the **basic physics**, **theory**, **current research topics**, and **applications** of **Atomic Physics and Quantum Optics**.

Topics:

- Classical and quantum coherence.
- 2-level atoms, atom-light interactions, Bloch sphere.
- Spontaneous emission, decoherence.
- Schrödinger equation, density matrix, quantum Monte Carlo.

Course Objectives (I)

Introduce the **basic physics**, **theory**, **current research topics**, and **applications** of **Atomic Physics and Quantum Optics**.

Topics:

- Classical and quantum coherence.
- **2-level atoms**, atom-light interactions, Bloch sphere.
- Spontaneous emission, decoherence.
- Schrödinger equation, density matrix, quantum Monte Carlo.
- Angular momentum of light and atoms.
- Multi-level quantum systems.

Course Objectives (I)

Introduce the **basic physics**, **theory**, **current research topics**, and **applications** of **Atomic Physics and Quantum Optics**.

Topics:

- Classical and quantum coherence.
- **2-level atoms**, atom-light interactions, Bloch sphere.
- Spontaneous emission, decoherence.
- Schrödinger equation, density matrix, quantum Monte Carlo.
- Angular momentum of light and atoms.
- Multi-level quantum systems.
- Laser cooling and trapping.
- Quantum theory of light, dressed atoms, squeezing.
- Quantum gases: Bose-Einstein condensation, atom-atom interactions.
- Spin squeezing, entanglement ... quantum Fourier transform (Shor's alg.)

Course Objectives (II)

Experimental Demonstrations

Seeing is believing ... Demonstration topics:

- Research lab visits.
- laser cooling and trapping.
- Magnetic trapping.
- Saturation spectroscopy.
- Spatial and temporal coherence.
- Particle behavior of light.

etc ...

Scientific Articles and Presentations

Practice reading and writing scientific articles and making science presentation.

Course Work

- > Problem sets: not-quite weekly, extra problems for graduate students.
- > Participation: class attendance, classroom discussion.
- Midterm (before spring break).
- Undergraduate students (work done in teams of two):
 - Final paper (4 pages, single space, Phys. Rev. Lett. format).
 - **Oral presentation** on the same subject matter.
- > Graduate students: Final exam (December 11, 9 am noon)

Undergraduate Grading

Total	100 %
Oral presentation	15 %
Final paper	20 %
Midterm	25 %
Participation	10 %
Problem sets	30 %

Graduate Grading

Total	100 %
Final Exam	30 %
Midterm	25 %
Participation	10 %
Problem sets	35 %

References

The course materials will be taken from original physics papers and the following texts:

Laser Cooling and Trapping, Metcalf and van der Straten.

Quantum Theory of Light, Loudon.

Cold Atoms and Molecules, Weidemüller and Zimmermann.

Introduction to Quantum Optics, Grynberg, Aspect, and Fabre.

Optical Coherence and Quantum Optics, Mandel and Wolf.

Atomic Physics, Foot.

Bose-Einstein Condensation in Dilute Gases, Pethick and Smith.

Quantum Mechanics, Cohen-Tannoudji, Diu, Laloë.

Quantum and Atom Optics, by D. Steck

https://atomoptics.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf

Schedule (I)

Week 0: 8/28 Intro to Atomic Physics and Quantum Optics Introduction to atom-light interactions, semi-classical atomic physics.

Week 1: 9/2-4 Coherence
Interference, first and second order coherence, correlation functions.

Week 2: 9/9-11 Quantum atomic physics: 2-level atoms 2-level systems, Rabi Flopping, Bloch sphere, Landau-Zener transitions.

Week 3: 9/16-18 AC Stark shift

Dressed atom picture, optical dipole trapping, optical tweezers.

Week 4: 9/23-25 Density Matrix
Decoherence, spontaneous emission, optical Bloch equations.

Week 5: 9/30-10/2 Monte Carlo numerical methods
Classical Monte Carlo, Quantum Monte Carlo, quantum jumps.

Week 6: 10/7 Multi-level atoms
Selection rules, fine and hyperfine structure, Zeeman effect.

------ Fall Break ------

Schedule (II)

Week 7: 10/14-16 3-level atoms

Saturation spectroscopy, electromagnetically-induced transparency.

Week 8: 10/21-23 Laser cooling and trapping I

Doppler cooling, optical molasses, Sisyphus cooling.

Week 9: 10/28-30 Laser cooling and trapping II

Resolved sideband cooling of ions, magnetic trapping, RF evaporation.

Week 10: 11/4-6 Photons I: Quantization of the electromagnetic field Introduction to field theory: quantization of the electromagnetic field.

Week 11: 11/11-13 Photons II: Quantization of the electromagnetic field Atom-photon interactions, photon squeezing, Casimir force.

Week 12: 11/18-20 Quantum gases

2nd quantization, atom interactions, Bose-Einstein condensation, Thomas-Fermi.

------ Fall Break ------

Schedule (III)

Week 13: 11/25 Atom interferometry & quantum sensing

Superpositions of position and momentum states, atomic shot noise. **Draft of final** papers due on 11/25.

Week 14: 12/2-4 Spin squeezing & quantum information

Heisenberg limit, spin squeezing, entanglement, quantum Fourier transform. **UG oral presentations on 12/2. Final papers due on 12/4.**

December 11, 2025, 9 am-noon Final Exam (graduate students only)

Quantum Mechanics, Atoms, and Photons

Review and Questions

- 1. What do you know about light and photons?
- 2. What do you know about atoms?
- 3. How was Quantum Mechanics discovered?

Light waves diffract as they go through the slits

Light waves interfere.

3 Holes

[figures from M. Frayser, W&M senior thesis, 2019]

4 Holes

5 Holes

Quasi-crystal pattern → pattern does not truly repeat!!

Light waves interfere.

Also works for single photons!!!

[A. L. Weiss and T. L. Dimitrova, Swiss Physics Society, 2009.]

Experiment uses a CCD camera (i.e. sensor in your digital camera).

Photons follow 2 paths simultaneously

Photons follow 2 paths simultaneously

I IGHT IS A

Atoms

Cobalt atoms on a copper surface (scanning tunneling microscope image)

[image from www.nist.gov]

Interference of a Bose-Einstein condensate

Single Rb atom (laser cooled and trapped)

 $[image\ from\ Grangier\ group,\ www.optique-quantique.u-psud.fr\]$

Matter is also a

How was quantum mechanics discovered?

Atomic Emission and Absorption Spectra

Quantum Version of Atoms

Energy Levels of Hydrogen (*n*=1-4)

Orbital angular momentum quantum number 1

[Figure from wikimedia.org]

Blackbody Radiation: Rayleigh-Jeans vs. Planck

Experiment vs. Theory (Coblentz data, 1916)

Blackbody Radiation: Rayleigh-Jeans vs. Planck

$$E = \hbar \omega$$

Experiment vs. Theory (Coblentz data, 1916)

Photo-Electric Effect

Millikan's photo-electric data for sodium (1914)

Photo-Electric Effect

 $E = \hbar \omega$

Millikan's photo-electric data for sodium (1914)

Compton Scattering

Compton Scattering

$$E = \hbar \omega$$

$$\vec{p} = \hbar \vec{k}$$

Compton Scattering

$$\vec{p} = \hbar \vec{k}$$

Compton's data for x-ray scattering in graphite (1923).

[figures adapted from Quantum Physics by Eisberg and Resnick, 1985.]

> Essential to the discovery of Quantum Mechanics

- Essential to the discovery of Quantum Mechanics
- What is the Hamiltonian of a Photon?

- Essential to the discovery of Quantum Mechanics
- What is the Hamiltonian of a Photon?
- How do you calculate the wavefunction of a Photon?

- Essential to the discovery of Quantum Mechanics
- What is the Hamiltonian of a Photon?
- How do you calculate the wavefunction of a Photon?
- Photons are different from electrons, protons, and atoms:
 - → Bosons.

- Essential to the discovery of Quantum Mechanics
- What is the Hamiltonian of a Photon?
- How do you calculate the wavefunction of a Photon?
- Photons are different from electrons, protons, and atoms:
 - → Bosons.
 - → They can appear and dissappear.
 [QM treatment ?]

- Essential to the discovery of Quantum Mechanics
- What is the Hamiltonian of a Photon?
- How do you calculate the wavefunction of a Photon?
- Photons are different from electrons, protons, and atoms:
 - → Bosons.
 - → They can appear and dissappear.
 [QM treatment ?]
- How do you treat the phase of a photon(s)?

- Essential to the discovery of Quantum Mechanics
- What is the Hamiltonian of a Photon?
- How do you calculate the wavefunction of a Photon?
- Photons are different from electrons, protons, and atoms:
 - → Bosons.
 - → They can appear and dissappear.
 [QM treatment ?]
- How do you treat the phase of a photon(s)?
- Do photons obey the Heisenberg uncertainty relations?

What's special about AMO Physics?

AMO Physics = Atomic, Molecular, and Optical Physics.

- > Test bed for Quantum Mechanics.
- Energy resolution of internal levels at the 1 part per 109 1018.
- ➤ 100+ years of spectroscopy.
- Frequency measurements at 10³-10¹⁵ Hz.
- Ab initio calculable internal structure.
- Precision tests of QED to 9-digits (measurement to 12-digits)

Electron's g-factor: $g_e = 2.002319304$

Applications

- Time keeping.
- Inertial navigation, force sensing.
- > Astronomy, nuclear, particle, and condensed matter physics.
- > GPS, telecommunications, data storage.