Practice problems

The Quantized Electromagnetic Field

1. Fock states

Consider the Fock state $|n\rangle_{k,s}$ with n excitations of the photon field with momentum k and polarization s in a volume V (in vacuum).

Compute the following quantities:

- a) Average electric field: $\langle \vec{E} \rangle =_{k,s} \langle n | \vec{E} | n \rangle_{k,s}$
- b) Variance of the electric field: $\Delta \vec{E}^2 =_{k,s} \langle n | \vec{E}^2 | n \rangle_{k,s} (k,s) \langle n | \vec{E} | n \rangle_{k,s}$
- c) Average photon number $\langle N \rangle =_{k,s} \langle n | N | n \rangle_{k,s}$ and photon number variance $\Delta N^2 =_{k,s} \langle n | N^2 | n \rangle_{k,s} \left(\sum_{k,s} \langle n | N | n \rangle_{k,s} \right)^2$

2. Coherent states I

Consider the coherent state $\left|\alpha\right\rangle_{k,s} = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \left|n\right\rangle_{k,s}$, where α is a complex number and

 $|n\rangle_{k,s}$ are the photon Fock states described in problem 1.

Compute the following quantities:

- a) Average electric field: $\langle \vec{E} \rangle =_{k,s} \langle \alpha | \vec{E} | \alpha \rangle_{k,s}$
- b) Variance of the electric field: $\Delta \vec{E}^2 =_{k,s} \langle \alpha | \vec{E}^2 | \alpha \rangle_{k,s} (_{k,s} \langle \alpha | \vec{E} | \alpha \rangle_{k,s})^2$
- c) Average photon number $\langle N \rangle =_{k,s} \langle \alpha | N | \alpha \rangle_{k,s}$

and photon number variance $\Delta N^2 = {}_{k,s} \langle \alpha | N^2 | \alpha \rangle_{k,s} - ({}_{k,s} \langle \alpha | N | \alpha \rangle_{k,s})^2$

d) For α =10, calculate the mean photon number, the variance in the photon number, and the quantum uncertainty in the optical phase.

3. Coherent States II

Consider two coherent states $|\alpha\rangle$ and $|\beta\rangle$. Show that they are not orthogonal by proving the relation:

$$\langle \alpha | \beta \rangle = \exp \left[-\frac{1}{2} \left(|\alpha|^2 + |\beta|^2 - 2\alpha^* \beta \right) \right]$$