1st Order Coherence

\A What's coherence?
\A Spatial Coherence.

\A Temporal Coherence.
\A 1st order correlation function.
\/5. Wiener-Khintchine

6. Mode-locked lasers



Optical Frequency Cornos

A frequency comb is also a pulsed laser:
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Opiical Frequency Combs

A frequency comb is also a pulsed laser:
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Optical Frequency Cornos

A frequency comb is also a pulsed laser:
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A mode-locked laser produces the shortest possible pulse:
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Can you use a Michelson interferometer
to measure the pulse time?

Basic principle: When the recombined
pulses from both arms overlap, they

interfere.
Mirror on
translation stage

Oscilloscope
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Can you use a Michelson interferometer
to measure the pulse time?

Basic principle: When the recombined
pulses from both arms overlap, they

interfere.
Mirror on T ’
translation stage | photocurrent = CSt _HEpath A (t) + Epath B (t + tdelay) dt
o N
photocurrent

>

tdelay
Oscilloscope

Answer: NO !l Michelson only measures spectral width!
|



Can you use a Michelson interferometer

to measure the pulse time?

Basic principle: When the recombined
pulses from both arms overlap, they

interfere.
Mirror on % °
translation stage | notocurrent = CSt HEpath A(D) + E e (T +1t5, )| dt
- 4+ Iphotocurrent

S

>

non-linear Liclay

crystal Oscilloscope

:: (optional)




2nd Order Coherence

. Degree of second order coherence

. Classical view: Time-domain

. Quantum view: Coincidence measurements
. Thermal Light vs. Laser Light

. Coherence of atomic sources



9@(7)

2" order correlation function

(1) 1t+7) (1) 1(t+7)

Definition: | (@) (T) = =

(FOXIt+2) (1)

It measures correlations in the intensity of the light, instead of
correlations in the electric field.




Random Phase Chaotic Light Source (Lorentzian)
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[computer simulation, from Quantum Theory of Light, by R. Loudon (2000)]



Gaussian Spectrum Chaotic Light Source
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[computer simulation, from Quantum Theory of Light, by R. Loudon (2000)]



Quantum g®(t): single-photon detection

If you can detect single photons (i.e. PMT or avalanche photodiode),

then for very low light levels
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[figure adapted from Quantum Theory of Light, by R. Loudon (2000)]
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Thermal Photons
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Thermal photons exhibit “bunching” at

short correlation times

[Figure from Morgan & Mandel, Phys. Rev. 16, 1012 (1966).]



Laser light

g4(t)

Laser light exhibit NO “bunching”.



Thermal Bosonic Atoms
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Thermal bosonic atoms are statistically identical to thermal photons !!!

[figure from A. Ottl, S. Ritter, M. Kohl, T. Esslinger, Phys. Rev. Lett. 95, 090404 (2005)]



Coherent Bosonic Atoms (BEC)

In a Bose-Einstein Condensate (BEC) all the atoms are in the same
state. It is the analog of a laser but with atoms (coherent matter waves).
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Atoms in a BEC are statistically identical to laser photons !!!

[figure from A. Ottl, S. Ritter, M. Kohl, T. Esslinger, Phys. Rev. Lett. 95, 090404 (2005)]
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