Quasi-static Limit:

- 1 W of power.
- focused down to 100 μm.

Quasi-static Limit:

- 1 W of power.
- focused down to 100 μm.

Atom: 87Rb

DC polarizability: $\alpha = h \cdot 0.08 \, Hz / (\frac{V}{cm})^2$

Quasi-static Limit:

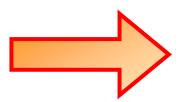
• 1 W of power.

• focused down to 100 μm.

Atom: 87Rb

DC polarizability: $\alpha = h \cdot 0.08 \, Hz / (\frac{V}{cm})^2$

 \Rightarrow Intensity ~ 10⁸ W/m², Electric field ~ 3 × 10³ V/cm


Quasi-static Limit:

- 1 W of power.
- focused down to 100 μ m.

Atom: 87Rb

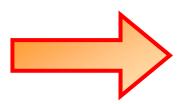
DC polarizability: $\alpha = h \cdot 0.08 \, Hz / (\frac{V}{cm})^2$

 \Rightarrow Intensity ~ 10⁸ W/m², Electric field ~ 3 × 10³ V/cm

$$U = -2.5 \times 10^{-28} J$$

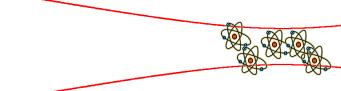
~ 20 µK !!!

 \Rightarrow v ~ 4 cm/s


Quasi-static Limit:

- 1 W of power.
- focused down to 100 μm.

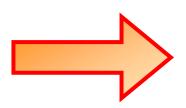
Atom: 87Rb


DC polarizability: $\alpha = h \cdot 0.08 \, Hz / (\frac{V}{cm})^2$

Intensity ~ 10^8 W/m², Electric field ~ 3×10^3 V/cm

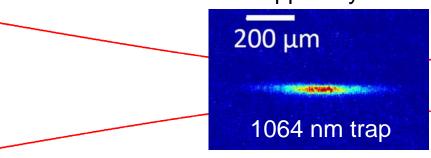
$$U = -2.5 \times 10^{-28} J$$
$$\sim 20 \ \mu K \ !!!$$
$$\Rightarrow v \sim 4 \ cm/s$$

Ultracold atoms are trapped by focused laser light !!!


Quasi-static Limit:

- 1 W of power.
- focused down to 100 μm.

Atom: 87Rb


DC polarizability: $\alpha = h \cdot 0.08 \, Hz / (\frac{V}{cm})^2$

Intensity ~ 10^8 W/m², Electric field ~ 3×10^3 V/cm

$$U = -2.5 \times 10^{-28} J$$
$$\sim 20 \ \mu K \ !!!$$
$$\Rightarrow v \sim 4 \ cm/s$$

Ultracold atoms are trapped by focused laser light !!!

