
PHYS 610: Electricity & Magnetism I 

Due date: Thursday, February 18, 2016 

 

 

Problem set #4 

 

 

1.  Adding a divergence term to the Lagrangian density 

Consider the following modification of the Lagrange density ℒ(𝜙, 𝜕𝜇𝜙), 
ℒ → ℒ + 𝜕𝜇𝐺

𝜇(𝜙) 

where 𝐺𝜇 is any vector function of the field 𝜙(𝑥𝜇). 
a) Show that the Euler-Lagrange equations of motion are unchanged. 

b) Show that this extra term leaves variations of the action integral unchanged. 

 

 

2.  Lagrangian density practice 

Find the Euler-Lagrange equations of motion for the scalar field 𝜙(𝑥𝜇) if the Lagrangian 

density is ℒ = 1

2
(𝜕𝜇𝜙)(𝜕
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2
𝑚2𝜙2. 

 

 

3.  Jackson problem 12.14 

 

 

4. A simple classical mechanics field theory in 1D 

It is often possible to derive a field theory as the limit of a discrete system. Consider an 

infinite system of identical point masses m, separated by identical springs with spring 

constant k and equilibrium length a. Let 𝜂𝑖 be the displacement from equilibrium of the 

ith point mass. 

a) Derive the exact (particle) Lagrangian and Euler-Lagrange equations of motion for this 

classical system (non-relativistic). 

 

b) Next consider the limit 𝑚, 𝑎 → 0, 𝑘 ⟶ ∞, but with 𝜇 = 𝑚/𝑎 and 𝑌 = 𝑘𝑎 held fixed. 

Now, replace 𝜂𝑖 with a smooth function 𝜂(𝑥, 𝑡) and show that in this limit the Lagrangian 

may be written as the integral of a density 

𝐿 = ∫𝑑𝑥
1
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and write down the corresponding Euler-Lagrange equation for the 𝜂(𝑥, 𝑡) field. 

 

 

5.  Particle tracking 

A relativistic electron enters a strong uniform magnetic field (directed along the z-axis) at 

some angle . No electric field is present. 

a) Derive an equation for the trajectory of the particle in time (in the lab frame of the 

magnet) from the Lorentz invariant form of the Lorentz force. 

b) What are the numerical parameters of the trajectory for a 12.0 GeV electron in a 1.00 

Tesla magnetic field if =/2. 


