

- 1 W of power.
- focused down to 100 $\mu\text{m}.$

- 1 W of power.
- focused down to 100 $\mu\text{m}.$

<u>Atom: ⁸⁷Rb</u> DC polarizability: $\alpha = h \cdot 0.08 Hz / (\frac{V}{cm})^2$

- 1 W of power.
- focused down to 100 $\mu\text{m}.$

<u>Atom: ⁸⁷Rb</u> DC polarizability: $\alpha = h \cdot 0.08 Hz / (\frac{V}{cm})^2$

 \Rightarrow Intensity ~ 10⁸ W/m², Electric field ~ 3 × 10³ V/cm

- 1 W of power.
- focused down to 100 $\mu\text{m}.$

<u>Atom: ⁸⁷Rb</u> DC polarizability: $\alpha = h \cdot 0.08 Hz / (\frac{V}{cm})^2$

 \Rightarrow Intensity ~ 10⁸ W/m², Electric field ~ 3 × 10³ V/cm

- 1 W of power.
- focused down to 100 $\mu\text{m}.$

<u>Atom: ⁸⁷Rb</u> DC polarizability: $\alpha = h \cdot 0.08 Hz / (\frac{V}{cm})^2$

 \Rightarrow Intensity ~ 10⁸ W/m², Electric field ~ 3 × 10³ V/cm

Ultracold atoms are trapped by focused laser light !!!

- 1 W of power.
- focused down to 100 $\mu\text{m}.$

<u>Atom: ⁸⁷Rb</u> DC polarizability: $\alpha = h \cdot 0.08 Hz / (\frac{V}{cm})^2$

 \Rightarrow Intensity ~ 10⁸ W/m², Electric field ~ 3 × 10³ V/cm

Ultracold atoms are trapped by focused laser light !!!

