
PHYS 610: Electricity & Magnetism I 

Due date: Thursday, March 15, 2018 

 

 

Problem set #6 

 

1. Thomas Precession: a more physical derivation 

In this problem, you will calculate the Thomas precession frequency (in the lab frame) for an 

electron in circular motion with a method due to Smoot and Purcell. We begin approximating 

circular motion with an N-sided polygon, as shown in the figure below (W, L, and 𝜃 are all in the 

lab frame). 

 

a) Consider the electron as it travels along one of the straight segments. Calculate, in the frame 

of the electron, the angle 𝜃′ by which the electron will rotate in the next segment in terms of 𝑊′ 
and 𝐿′ (in the frame of the electron) for N large. You can then write 𝜃′ in terms of W and L in the 

lab frame. Next, give the relationship between 𝜃′ and 𝜃. The electron has an orbital velocity of v 

and an orbital frequency 𝜔𝑜𝑟𝑏𝑖𝑡 in the lab frame. 

b) We define ∆𝜃 = 𝜃′𝑡𝑜𝑡𝑎𝑙 − 𝜃𝑡𝑜𝑡𝑎𝑙  as the difference in accumulated rotation phase over the 

course of one orbit between the electron’s frame and the lab frame. Here 𝜃𝑡𝑜𝑡𝑎𝑙 = 2𝜋 is the 

rotation phase accumulated in the lab frame over the course of one orbit (in the lab frame). 

Calculate ∆𝜃 in terms of the relativistic factor 𝛾. 

c) Write down the relationship between the orbital periods in the lab frame and the electron’s 

frame. We define the Thomas precession frequency 𝜔𝑇ℎ𝑜𝑚𝑎𝑠 (in the lab frame) as the difference 

in accumulated rotation phase per orbit time: 𝜔𝑇ℎ𝑜𝑚𝑎𝑠 = ∆𝜃/𝑇. Show that 𝜔𝑇ℎ𝑜𝑚𝑎𝑠 =
𝜔𝑜𝑟𝑏𝑖𝑡(𝛾 − 1). 

d) Show that for circular motion  𝜔𝑇ℎ𝑜𝑚𝑎𝑠 = 𝑎𝑣/(2𝑐2), where 𝑎 is the centripetal acceleration 

of the electron in the lab frame. 

 

2. Magic Gamma 

Consider the Thomas-BMT equation for the longitudinal spin polarization of a particle subject to 

a magnetic field �⃗�  and electric field �⃗�  (in the lab frame): 
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Where 𝑎 = (𝑔 − 2)/2 is the anomalous magnetic moment, 𝑔 is the g-factor of the particle, 

(relating its magnetic moment and spin), and 𝛽 = 𝑣 /𝑐 relates the velocity 𝑣  of the particle. The 

longitudinal and transverse spin polarization components are given by 𝑠∥ = 𝑠 ⋅ �̂� and 𝑠 ⊥ = 𝑠 −

𝑠∥�̂�, respectively. 

a) Show that there is a “magic” velocity (and 𝛾) such that the electric field does not influence the 

longitudinal spin polarization. 

b) Calculate the relativistic energy for a muon travelling at this “magic” 𝛾, and compare it with 

the storage ring energy for the FermiLab experiment which is measuring its g-factor (or “g-2”). 

 

3. Variation on the Divergence Theorem 

Prove the following two integral theorems: 

a) ∫ (∇⃗⃗ × 𝐹 )𝑑3𝑟
𝑉

= ∫ F⃗ × 𝑑𝑠 
𝑆

 

 

b) ∫ ∇⃗⃗ 𝑓𝑑3𝑟
𝑉

= ∫ 𝑓𝑑𝑠 
𝑆

 

Where 𝑓 is a scalar function, 𝐹  is a vector function, and S is the bounding surface for a volume 

V. 

Hint: You may want to consider “multiplying” the appropriate field by a constant vector field. 

 

4.  Variation on Stokes’ theorem 

Prove the following integral theorem: ∫ �̂� × ∇⃗⃗ 𝑓 𝑑𝑆
𝑆

= ∫ 𝑓 𝑑𝑙⃗⃗  ⃗
𝐶

 

 

Where 𝑓 is a scalar function, S is surface with contour C, �̂� is a unit vector locally perpendicular 

to S, and 𝑑𝑙⃗⃗  ⃗ is a differential line element along C. 

 

 

5.  Green’s identities 

a)  Use the divergence theorem to prove Green’s first identity: 

∫ [𝜙∇⃗⃗ 2𝜓 + ∇⃗⃗ 𝜙 ⋅ ∇⃗⃗ 𝜓]
𝑉

𝑑3𝑟 = ∫ 𝜙∇⃗⃗ 𝜓 ⋅
𝑆

𝑑𝑆⃗⃗⃗⃗  

𝜙(𝑟 ) and 𝜓(𝑟 ) are arbitrary (well-behaved) scalar functions, and V is a volume with surface S. 

 

b)  Prove Green’s second identity: 

∫ [𝜙∇⃗⃗ 2𝜓 − 𝜓∇⃗⃗ 2𝜙]
𝑉

𝑑3𝑟 = ∫ [𝜙∇⃗⃗ 𝜓 − 𝜓∇⃗⃗ 𝜙] ⋅
𝑆

𝑑𝑆⃗⃗⃗⃗  

 

 

6.  Mean value theorem for electrostatics 

Consider a function 𝑓(𝑟 ) that obeys Laplace’s equation ∇⃗⃗ 2𝑓 = 0. Show that 𝑓(𝑟 ) obeys the 

following average rule: The value of 𝑓(𝑟 ) at any point 𝑟  is equal to the average of 𝑓(𝑟 ) over the 

surface of any sphere centered on 𝑟 . 

Note: this result shows that 𝑓(𝑟 ) can have no local maximum or minimum, only saddle points at 

most. 


